Definability of types, symmetry and stationarity in local stability

Seminar: Introduction to stable theories

Blaise BOISSONNEAU

January 10, 2022

Source The content of this talk is adapted from Daniel Palacín's Chapter in *Lectures in Model Theory*, EMS, 2018: https://www.ems-ph.org/books/book.php?proj_nr=229

Conventions We fix a complete \mathcal{L} -theory T and work in a Monster model \mathcal{M} . We write single letters a, b, c... for (finite) tuples of elements and x, y, z... for tuples of variables. For a partitionned formula $\varphi(x, y)$, we let $\varphi * (y, x) = \varphi(x, y)$. We write we for Many cups of coffee, the very same joke every time and I.

Stone spaces

Recall that:

- A basis of open sets for $S_n(A)$ is the collection of $[\psi] = \{p \in S_n(A) \mid \psi \in p\}$ for $\psi \in \mathcal{L}(A)$. Each $[\psi]$ is also closed and $S_n(A)$ is compact.
- Similarly, when $\psi(x)$ is a Boolean combination of $\varphi(x, a)$ and $\neg \varphi(x, a')$ (for $a, a' \in A$), $[\psi] = \{p \in S_{\varphi}(A) \mid p \vdash \psi\}$ is a basic open set of $S_{\varphi}(A)$.
- Let $\pi_{\varphi} : S_n(A) \to S_{\varphi}(A); p \to p|_{\varphi}$. It is a continuous function, thus $S_{\varphi}(A)$ is also compact.

1 Definability of types

We always assume that $\varphi(x, y)$ is stable.

Lemma 1. For any $p(x) \in S_n(A)$, there is $q \in S_{\varphi}(\mathcal{M})$ consistent with p and $\operatorname{acl}^{eq}(A)$ -definable.

Proof. Let $X_0 = \{q \in S_{\varphi}(\mathcal{M}) \mid p \cup q \text{ is consistent}\}$. Note that $X_0 = \pi_{\varphi}[p]$ where $[p] = \bigcap_{\psi \in p}[\psi]$; in particular, X_0 is closed.

For each *i*, define X_{i+1} to be the set of accumulation points of X_i :

$$X_{i+1} = \{ p \in X_i \mid \forall \psi \in \mathcal{L}|_{\varphi}(\mathcal{M}), \, p \in [\psi] \Rightarrow \exists p' \in X_i \cap [\psi], p \neq p' \}$$

Any $p \in X_i \setminus X_{i+1}$ is isolated by a formula, thus all X_i are closed. Suppose X_{n+1} is non-empty:

- There is $\psi \in \mathcal{L}|_{\varphi}(A)$ and $p, p' \in X_n$ distinct but both implying ψ .
- p and p' are distinct, so for some $a, \varphi(x, a) \in p$ and $\neg \varphi(x, a) \in p'$.
- $\psi \wedge (\neg)\varphi(x,a)$ is a Boolean combination of φ , and since $p \vdash \psi \wedge \varphi(x,a)$, we can find $p'' \in X_{n-1}$ distinct also implying it.

In the end, we obtain a binary tree of formulas of height n. Thus, by compactness, if X_n is never empty, we can find a binary tree of any height. Take μ such that $|2^{<\mu}| \leq |T| < 2^{\mu}$, and consider a binary tree of height μ – thus having 2^{μ} many branches and $|2^{<\mu}|$ many formulas. We can find a model \mathcal{N} of size |T| containing all parameters of this tree. Now:

- $S_{\varphi}(\mathcal{N}) \ge 2^{\mu} > |T|$ because each branch can be extended into at least one φ -type,
- $S_{\varphi}(\mathcal{N}) \leq |T|$ because φ -types over models are definable (recall that φ is stable).

Hence, there must be some smallest n for which n + 1 is empty (clearly X_0 is non-empty). This means that any $p \in X_n$ is isolated by some formula ψ_p . Because $X_n = \bigcup_{p \in X_n} [\psi_p]$ and since X_n is compact, it must be finite.

Take $q \in X_n$, it is definable (seen last week); but since X_n is A-invariant, any conjugate of q over A must lie in X_n , so there are finitely many, and the canonical basis of q must be in $\operatorname{acl}^{eq}(A)$.

2 Symmetry

Lemma 2 (Harrington).

$$d_p x \varphi(x, y) \in q(y) \Leftrightarrow d_q y \varphi(x, y) \in p(x)$$

Proof. Definitions of φ in p and q exist because φ is stable. Let A be parameters of both definitions. We let b_0 realize $q|_A$ and a_0 realize $p|_{A\cup\{b_0\}}$. By induction, we let b_n realize $q|_{A\cup\{a_0,\dots,a_{n-1}\}}$ and a_n realize $p|_{A\cup\{b_0,\dots,b_n\}}$. Thus:

- For $i \ge j$, $\vDash \varphi(a_i, b_j)$ iff $\varphi(x, b_j) \in p$ iff $\vDash d_p x \varphi(x, b_j)$ iff $d_p x \varphi(x, y) \in q$,
- For i < j, $\vDash \varphi(a_i, b_j)$ iff $\varphi(a_i, y) \in q$ iff $\vDash d_q y \varphi(a_i, y)$ iff $d_q y \varphi(x, y) \in p$.

 φ is stable, thus there must be i < j and $i' \ge j'$ such that $\vDash \varphi(a_i, b_j) \leftrightarrow \varphi(a_{i'}, b_{j'})$. \Box

3 Stationarity

We call $S_{\varphi^+}(A)$ the set of complete generalized φ -types: they are allowed to contain formulas $\psi(x, a)$ with $a \in A$ equivalent to boolean combinations of φ with parameters anywhere. Over models, generalized φ -types are the same as φ -types.

Lemma 3. For any generalized φ -type over $A = \operatorname{acl}^{eq}(A)$, there is a unique Adefinable type extending it to \mathcal{M} .

Proof. Let $A = \operatorname{acl}^{eq}(A)$ and $p \in S_{\varphi^+}(A)$. By the first lemma, there is a type in $S_{\varphi}(\mathcal{M})$ extending p which is definable over A.

Now let $p_1, p_2 \in S_{\varphi}(\mathcal{M})$ extending p be A-definable. Take $b \in \mathcal{M}$, we aim to prove that $\varphi(x, b) \in p_1$ iff $\varphi(x, b) \in p_2$.

- By the first lemma, there is $q(y) \in S_{\varphi^*}(\mathcal{M})$ definable over A and consistent with $\operatorname{tp}(b/A)$.
- For completions p'_1, p'_2 and q' of p_1, p_2 and $q \cup tp(b/A)$ we can apply Harrington's Lemma:

$$\varphi(x,b) \in p_i \Leftrightarrow d_{p'_i} x \varphi(x,y) \in \operatorname{tp}(b/A) \subset q' \Leftrightarrow d_{q'} y \varphi(x,y) \in p'_i$$

- We know (see last week) that $d_{q'}y\varphi(x,y)$ is equivalent to a positive Boolean combination of $\varphi(a,y)$.
- We also know it has parameters in A, thus p knows about it:

$$d_{q'}y\varphi(x,y)\in p'_i\Leftrightarrow d_{q'}y\varphi(x,y)\in p$$

Hence $p_1 = p_2$ and we have uniqueness. Note that we only use acl^{eq} -closure in the last step.

Lemma 4. Let $p \in S_{\varphi}(\mathcal{M})$ be definable over a model \mathcal{N} and consistent with a partial type $\pi(x)$ over \mathcal{N} ; they are finitely co-satisfiable in \mathcal{N} .

Proof. Clearly the restriction of p to \mathcal{N} is finitely co-satisfiable with π in \mathcal{N} ; hence there is $q \in S_x(\mathcal{M})$ extending $p \cup \pi$ finitely satisfiable in \mathcal{N} . Its restriction $q|_{\varphi}$ is thus definable over \mathcal{N} (see last week).

We show $q|_{\varphi} = p$. Assume not; then there is $c \in \mathcal{M}$ such that $\varphi(x, c) \in p$ and $\neg \varphi(x, c) \in q$. This means:

$$\mathcal{M} \vDash d_p x \varphi(x, c) \land \neg d_q x \varphi(x, c)$$
$$\mathcal{M} \vDash \exists y (d_p x \varphi(x, y) \land \neg d_q x \varphi(x, y))$$
$$\mathcal{N} \vDash \exists y (d_p x \varphi(x, y) \land \neg d_q x \varphi(x, y))$$

But that can't be because p and q agree for φ on \mathcal{N} .

4 Dividing

Proposition 5. Fix a and A, TFAE:

- 1. $\varphi(x, a)$ is satisfiable in every model containing A
- 2. $\varphi(x, a)$ doesn't fork over any model containing A
- 3. $\varphi(x, a)$ doesn't divide over A
- 4. There is a formula $\chi(x) \in \mathcal{L}(A)$ equivalent to a positive Boolean combination of A-conjugates of $\varphi(x, a)$
- 5. There is $p \in S_{\varphi}(\mathcal{M})$ acl^{eq}(A)-definable and containing $\varphi(x, a)$.

The most important equivalence here is between 3 and 5, at least for this talk.

Proof.

1⇒**2** Assume $\varphi(x, a) \vdash \bigvee_{i < n} \varphi_i(x, b_i)$. Let $d \in \mathcal{N}$ realize $\varphi(x, a)$, then there must be *i* such that $\mathcal{N} \models \varphi_i(d, b_i)$. But this also holds for any $b' \equiv_{\mathcal{N}} b$.

 $2\Rightarrow3$ We saw last week that a formula divides over a set iff it divides over some model containing this set.

 $5 \Rightarrow 1$ A type $\operatorname{acl}^{eq}(A)$ -definable is also definable over any model containing A, and thus by the previous lemma, finitely satisfiable in this model.

4⇒5 By our first lemma, there is $p \in S_{\varphi}(\mathcal{M})$ acl^{eq}(A)-definable and consistent with $\chi(x)$. Hence one of the formulas $\varphi(x, a')$ appearing in $\chi(x)$ must lie in p. Let $\sigma \in \operatorname{Aut}(\mathcal{M}/A)$ send a' to a and consider σp .

3⇒**4** Let $p = \operatorname{tp}(a/A)$. By our first lemma, there is a type $q \in S_{\varphi^*}(\mathcal{M})$ consistent with p and $\operatorname{acl}^{eq}(A)$ -definable, and thus definable in some model \mathcal{N} containing A. By the previous lemma, $p \cup q$ is finitely satisfiable in \mathcal{N} , and we can find $q' \in S_n(\mathcal{M})$ finitely satisfiable in \mathcal{N} containing p and q.

Since φ^* is stable, $q'|_{\varphi^*}$ – which is exactly q – is definable by a positive Boolean combination of $\varphi(x, c_i)$, where each c_i realizes $q|_{\mathcal{N}\cup\{c_0, \dots, c_{i-1}\}}$. Because q' is A-invariant (by finite satsfiability in \mathcal{N}), we can take $(c_i)_{i<\omega}$ \mathcal{N} -indiscernible, thus also A-indiscernible. Furthermore, q contains $\operatorname{tp}(a/A)$, so $c_i \equiv_A a$. Because $\varphi(x, a)$ doesn't divide, the definition of $q'|_{\varphi^*}$ is satisfiable.

Recall that q was taken to be $\operatorname{acl}^{eq}(A)$ -def: there is $\psi(x, d)$ with $d \in \operatorname{acl}^{eq}(A)$ defining q, hence equivalent to the positive Boolean combination of $\varphi(x, c_i)$ defining $q'|_{\varphi^*}$. Now consider $\chi(x) = \bigvee_{d \equiv Ad'} \psi(x, d')$.

We now consider several formulas at once. The following result is just a coding trick:

Lemma 6. Let $\Delta(x, y)$ be a finite set of formulas and let $n = |\Delta|$. There is $\chi_{\Delta}(x; y_0, \dots, y_n, z, z_0, \dots, z_{2n})$ such that:

- If A has a least 2 elements, for $a \in A$ and $\varphi \in \Delta$, there are $b, b' \in A$ such that $\varphi(x, a) \leftrightarrow \chi_{\Delta}(x, b)$ and $\neg \varphi(x, a) \leftrightarrow \chi_{\Delta}(x, b')$.
- Given $b \in A$ such that $\psi_{\Delta}(x, b)$ is consistent, there is $a \in A$ and $\varphi \in \Delta$ such that $\chi_{\Delta}(x, b) \leftrightarrow \varphi(x, a)$ or $\chi_{\Delta}(x, b) \leftrightarrow \neg \varphi(x, a)$.
- χ_{Δ} is stable iff all formulas in Δ are stable.

Thus we can think about Δ -types as χ_{Δ} -types.

Proposition 7. Let $\varphi(x, y)$ and $\psi(x, z)$ be stable. If both $\varphi(x, a)$ and $\psi(x, b)$ divide over A, so does $\varphi \lor \psi(x; a, b)$.

In particular, for any a and A, we obtain that either $\varphi(x, a)$ or $\neg \varphi(x, a)$ does not divide over A.

Clearly this doesn't work for unstable formulas (recall the cyclical order example).

The strategy of the proof is as follows: $\varphi \lor \psi$ does not divide iff it is contained in an $\operatorname{acl}^{eq}(A)$ -definable $\varphi \lor \psi$ -type. Then this type – or rather, another type very similar but allowed to contained more formulas – must contain φ or ψ , thus φ (or ψ) is contained in an $\operatorname{acl}^{eq}(A)$ -definable φ (or ψ)-type, which is equivalent to φ (or ψ) not dividing.

Proof. Let $\Delta = \{\varphi, \psi, \varphi \lor \psi\}$ and let χ_{Δ} encode it as above. χ_{Δ} is stable. The formula $\varphi \lor \psi(x; ab)$ does not divide over A iff there is $p \in S_{\varphi \lor \psi}(\mathcal{M})$ acl^{eq}(A)-definable and containing it.

Let $p|_{\operatorname{acl}^{eq}(A)^+} \in S_{\varphi \lor \psi^+}(A)$ restrict p. By our first lemma, there is $q \in S_{\chi_\Delta}(\mathcal{M})$ acl^{eq}(A)-definable and consistent with $p|_{\operatorname{acl}^{eq}(A)^+}$.

There is a $q' \in S_{\Delta}(\mathcal{M})$ equivalent to q; hence q' is A-invariant and thus $q'|_{\varphi \lor \psi}$ is $\operatorname{acl}^{eq}(A)$ -definable.

 $p \text{ and } q'|_{\varphi \lor \psi}$ are two $\operatorname{acl}^{eq}(A)$ -definable extensions of $p|_{\operatorname{acl}^{eq}(A)^+}$, thus they are equal and $\varphi \lor \psi(x; ab) \in q'$. This yields that either $\varphi(x, a)$ or $\psi(x, b) \in q'$.

Both $q'|_{\varphi}$ and $q'|_{\psi}$ are also $\operatorname{acl}^{eq}(A)$ -definable and thus the formula contained in q' can't divide over A.

As a direct corollary, we get that in a stable theory, dividing and forking are equivalent.