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Source The content of this talk is adapted from Daniel Palacin’s Chapter in Lec-
tures in Model Theory, EMS, 2018:
https://www.ems-ph.org/books/book.php?proj_nr=229

Conventions We fix a complete L-theory T" and work in a Monster model M.
We write single letters a, b, c... for (finite) tuples of elements and x, y, z... for
tuples of variables. For a partitionned formula ¢(x,y), we let ¢ x (y,z) = ¢(z,y).
We write we for Many cups of coffee, the very same joke every time and I

Stone spaces

Recall that:

e A basis of open sets for S,(A) is the collection of [)] = {p € S.(A) | ¥ € p}
for » € L(A). Each [¢] is also closed and S,(A) is compact.

e Similarily, when v (z) is a Boolean combination of ¢(z,a) and —p(z,d’) (for
a,a’ € A), ] ={p € S,(A) | pF ¢} is a basic open set of S,(A).

o Let m, : S,,(A) = S,(A);p — p|,. It is a continuous function, thus S,(A) is
also compact.

1 Definability of types

We always assume that ¢(x,y) is stable.

Lemma 1. For any p(x) € S,(A), there is ¢ € S,(M) consistent with p and
acl®(A)-definable.

Proof. Let Xy = {q € S,(M) | pUq is consistent}. Note that X, = 7,[p] where
[p] = (e, [¥]; in particular, X, is closed.
For each 7, define X;,; to be the set of accumulation points of X;:

Xin={pe Xi [V e L|,(M),pe ] = € Xin[Y],p# 1}
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Any p € X; \ X1 is isolated by a formula, thus all X; are closed.
Suppose X, is non-empty:

e There is v € L|,(A) and p,p’ € X,, distinct but both implying 1.
e p and p’ are distinct, so for some a, ¢(x,a) € p and —p(z,a) € p'.

e Y A (—)¢(x,a) is a Boolean combination of ¢, and since p F ¥ A p(z,a), we
can find p” € X,,_; distinct also implying it.

In the end, we obtain a binary tree of formulas of height n. Thus, by compactness,
if X,, is never empty, we can find a binary tree of any height. Take p such that
|2<#] < |T| < 2*, and consider a binary tree of height ;1 — thus having 2* many
branches and |2<#| many formulas. We can find a model N of size |T'| containing
all parameters of this tree. Now:

e S,(N) > 2# > |T| because each branch can be extended into at least one
p-type,

e S,(N) < |T| because ¢-types over models are definable (recall that ¢ is sta-
ble).

Hence, there must be some smallest n for which n + 1 is empty (clearly X is
non-emtpy). This means that any p € X, is isolated by some formula t),. Because
Xy = Upex, [¥p] and since X, is compact, it must be finite.

Take ¢ € X, it is definable (seen last week); but since X, is A-invariant, any
conjugate of g over A must lie in X,,, so there are finitely many, and the canonical
basis of ¢ must be in acl®(A). O

2 Symmetry
Lemma 2 (Harrington).

dpro(r,y) € q(y) & dyyp(x,y) € p(x)

Proof. Definitions of ¢ in p and ¢ exist because ¢ is stable. Let A be parameters of
both definitions. We let by realize ¢4 and ag realize p|augs,}. By induction, we let
by, realize q|au{ag;san_.} and ay, realize plaugpg;p,}- Thus:

o Fori> j, Fy(a;, b)) iff o(x,b;) € piff Edyrp(x,b;) iff dyzp(x,y) € q,
e Fori < j, F p(a;,b;) iff p(a;,y) € qiff Edyp(a;,y) iff dyye(z,y) € p.

¢ is stable, thus there must be i < j and ¢’ > j" such that F ¢(a;, b;) <> p(ay,bj). O



3 Stationarity

We call S,+(A) the set of complete generalized p-types: they are allowed to con-
tain formulas ¢(x,a) with @ € A equivalent to boolean combinations of ¢ with
parameters anywhere. Over models, generalized ¢-types are the same as p-types.

Lemma 3. For any generalized o-type over A = acl®(A), there is a unique A-
definable type extending it to M.

Proof. Let A = acl®(A) and p € S,+(A). By the first lemma, there is a type in
So(M) extending p which is definable over A.

Now let p1,ps € Sy,(M) extending p be A-definable. Take b € M, we aim to
prove that o(z,b) € py iff p(z,b) € po.

e By the first lemma, there is q(y) € S,-(M) definable over A and consistent
with tp(b/A).

e For completions p!, p, and ¢’ of py, p2 and qUtp(b/A) we can apply Harrington’s
Lemma:

o(x,0) € pi & dyxp(z,y) € tp(b/A) C ¢ & dyyp(z,y) € P

e We know (see last week) that dyyp(z,y) is equivalent to a positive Boolean
combination of ¢(a,y).

e We also know it has parameters in A, thus p knows about it:
dyye(z,y) € p; & dyyp(z,y) € p

Hence p; = py and we have uniqueness. Note that we only use acl®-closure in the
last step. O

Lemma 4. Letp € S,(M) be definable over a model N and consistent with a partial
type (x) over N'; they are finitely co-satisfiable in N .

Proof. Clearly the restriction of p to A is finitely co-satisfiable with 7 in A; hence
there is ¢ € S;(M) extending p U 7 finitely satisfiable in N. Its restriction ¢l is
thus definable over A (see last week).

We show ¢|, = p. Assume not; then there is ¢ € M such that ¢(x,c) € p and
—p(x,c) € g. This means:

ME dyro(x, ) A ~dro(z, c)
M E y(dyzo(z,y) A —dgzp(z,y))
N E Jy(dyzp(x, y) A ~dze(x,y))

But that can’t be because p and ¢ agree for ¢ on N. O



4 Dividing
Proposition 5. Fiz a and A, TFAE:

1. p(z,a) is satisfiable in every model containing A
o(x,a) doesn’t fork over any model containing A

o(x,a) doesn’t divide over A

There is a formula x(x) € L(A) equivalent to a positive Boolean combination
of A-conjugates of p(x,a)

5. There is p € S,(M) acl®(A)-definable and containing ¢(x,a).
The most important equivalence here is between [3] and [f] at least for this talk.
Proof.

Assume ¢(x,a) F\/,_, vi(z,b;). Let d € N realize p(x,a), then there must
be ¢ such that N F ¢;(d, b;). But this also holds for any &' =, b.

=81 We saw last week that a formula divides over a set iff it divides over some
model containing this set.

51| A type acl®(A)-definable is also definable over any model containing A, and

thus by the previous lemma, finitely satisfiable in this model.

4=15| By our first lemma, there is p € S, (M) acl®(A)-definable and consistent
with x(x). Hence one of the formulas ¢(z,a’) appearing in x(x) must lie in p. Let
o € Aut(M/A) send a’' to a and consider op.

Let p = tp(a/A). By our first lemma, there is a type ¢ € Sy (M) consistent
with p and acl®(A)-definable, and thus definable in some model N containing A.
By the previous lemma, pUq is finitely satisfiable in N/, and we can find ¢’ € S,,(M)
finitely satisfiable in A/ containing p and g.

Since ¢* is stable, ¢'|~ — which is exactly ¢ — is definable by a positive Boolean
combination of ¢(x, ¢;), where each ¢; realizes q|aucy;-.c;_,}- Because ¢’ is A-invariant
(by finite satsfiability in N'), we can take (¢;)i<, MN-indiscernible, thus also A-
indiscernible. Furthermore, ¢ contains tp(a/A), so ¢; =4 a. Because ¢(x,a) doesn’t
divide, the definition of ¢'|,~ is satisfiable.

Recall that g was taken to be acl®(A)-def: there is ¢(x,d) with d € acl®(A)
defining ¢, hence equivalent to the positive Boolean combination of ¢(z, ¢;) defining
q'|p+. Now consider x(z) =\, 4 ¥ (2, d). O

We now consider several formulas at once. The following result is just a coding
trick:



Lemma 6. Let A(z,y) be a finite set of formulas and let n = |A|.  There is
Xa (Y0, Yny 2, 20, * +, Z2n) Such that:

e If A has a least 2 elements, for a € A and ¢ € A, there are b,/ € A such that
¢<w7 a) A XA(ma b) and _\QO(I’, CL) A XA(xa bl)

o Given b € A such that Pa(x,b) is consistent, there is a € A and ¢ € A such
that xa(e,b) < oz, @) o xa(r,b) (e, ).

o xa is stable iff all formulas in A are stable.
Thus we can think about A-types as ya-types.

Proposition 7. Let o(x,y) and i(z, z) be stable. If both p(x,a) and ¢ (x,b) divide
over A, so does ¢ V (z;a,b).

In particular, for any a and A, we obtain that either p(x,a) or —p(zx,a) does
not divide over A.

Clearly this doesn’t work for unstable formulas (recall the cyclical order exam-
ple).

The strategy of the proof is as follows: ¢ V ¢ does not divide iff it is contained
in an acl®(A)-definable ¢ V ¢-type. Then this type — or rather, another type very
similar but allowed to contained more formulas — must contain ¢ or 1, thus ¢ (or
1) is contained in an acl®/(A)-definable ¢ (or ¥)-type, which is equivalent to ¢ (or
¥) not dividing,.

Proof. Let A = {p,1, oV} and let ya encode it as above. xa is stable. The
formula ¢ V ¢ (z;ab) does not divide over A iff there is p € Syyy(M) acl®(A)-
definable and containing it.

Let placicacayr € Spvpt (A) restrict p. By our first lemma, there is ¢ € Sy, (M)
acl®(A)-definable and consistent with placiea(ay+-

There is a ¢’ € SA(M) equivalent to ¢; hence ¢’ is A-invariant and thus ¢'|,v. is
acl®(A)-definable.

p and ¢'[,vy are two acl®(A)-definable extensions of place(ay+, thus they are
equal and ¢ V ¢ (z;ab) € ¢'. This yields that either p(x,a) or ¥ (z,b) € ¢

Both ¢'|, and ¢'|, are also acl/(A)-definable and thus the formula contained in
¢’ can’t divide over A. H

As a direct corollary, we get that in a stable theory, dividing and forking are
equivalent.
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