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Goal

Conjecture (André-Oort)
Let X be a Shimura variety and let Σ be a set of special points in
X. Let V be the Zariski closure of Σ. Then the irreducible
components of V are special subvarieties.

In 2011, Pila proved AOC in the case where X is a product of
modular curves, elliptic curves, and copies of C× (see [Pil11]). We
will expose his proof in this talk and in next week’s talk, following
Scanlon’s formulation (see [Sca17], sec. 5.2).



The j-invariant

We recall some properties of the function j : H 7→ A1(C):
I j is surjective.
I j is invariant under the action of SL2(Z), and induces an

isomorphism H/ SL2(Z) ∼= A1(C).
I j is complex analytic or real analytic when we identify C with
R2 in the usual way.

I For any τ ∈ H, we consider the elliptic curve
Eτ = C/(Z+Zτ). We have Eτ ∼= Eτ ′ iff j(τ) = j(τ ′).

With help of the last fact, we can consider A1(C) as a moduli
space of elliptic curves, that is, to each point j(τ) ∈ A1(C)
corresponds an isomorphism class of elliptic curves. When seen as
a moduli space, we call A1(C) the j-line.

The j-line is the prototypical example of a modular curve.



Modular curves
Definition (congruence subgroups)

I The principal congruence subgroup of order n is
Γ(n) = {A ∈ SL2(Z) | A = ( 1 0

0 1 ) mod n}.
I A congruence subgroup is any subgroup Γ of SL2(Z)

containing Γ(n) for some n.

Recall that SL2(Z) acts on H = {τ ∈ C | =(τ) > 0} by:
( a b

c d
)
, τ → aτ+b

cτ+d

Proposition (C.13.12 in [Sil86])
Let Γ be a congruence subgroup, then there exist a smooth affine
curve YΓ and a complex analytic function jΓ : H 7→ YΓ invariant
under the action of Γ and inducing an isomorphism H/Γ ∼= YΓ.
We call YΓ a modular curve and jΓ its canonical covering. Note
that if Γ = SL2(Z), then jΓ = j and YΓ = A1(C).



Special points
Fix a modular curve Y and consider its canonical covering
jΓ : H 7→ Y . We can then see Y as a weak moduli space of elliptic
curves: to each y ∈ Y corresponds {Eτ | τ ∈ H, jΓ(τ) = y}.
Since jΓ(τ) = jΓ(τ ′) iff τ and τ ′ are Γ-conjugates, those classes
only contain isomorphic elliptic curves; but some isomorphic elliptic
curves might lie in different classes. When seen as a weak moduli
space, we call Y the jΓ-line.

Definition (Special points)

I If Y is the jΓ-line, then we call y ∈ Y special if the
corresponding class of elliptic curves has Complex
Multiplication (CM).

I If A is an abelian variety, then we call a ∈ A special if it is a
torsion point. This include the case where A is an elliptic
curve or C×.

A point (x , y) ∈ X × Y is special if x and y are both special.



Special subvarieties of modular curves

Let X = Y1 × · · · × Yn be a product of modular curves. Fix a
partition S of {1,· · ·, n}. If s ∈ S is not a singleton, fix
gi ∈ GL2(Q) for each i ∈ s. We call a subvariety Z of X special if
Z =

∏
s∈S Zs , each Zs is a subvariety of

∏
i∈s Yi , and:

I If s is a singleton, Zs is a singleton containing only a special
point;

I If s is not a singleton, Zs = (
∏

i∈s jΓi ◦ gi )(H).
In the case where X = An(C), then special subvarieties can
equivalentely be defined with the help of modular polynomials Φn:

Proposition (folklore (Hilbert?))
For each n > 0, there exists a minimal polynomial Φn ∈ Z[X ,Y ]
such that Φn(j(nτ), j(τ)) = 0.
A special subvariety of An(C) is then defined by equations of the
form xk = z for z special or Φn(xi , xj) = 0.



Pila’s theorem

Definition (special subvarieties of abelian varieties)
Let A be an abelian variety, let B > A be an algebraic subvariety,
and let a ∈ A be special (i.e. torsion); then we call a + B a special
subvariety.
For a product of the form Y1 × · · · × Yn × A, special subvarieties
are Z × B with Z special in Y1 × · · · × Yn and B special in A.

Theorem (Pila – AOC)
Let X = Y1 × · · · × Yn × E1 × · · · × Em × (C×)` with Yi modular
curves and Ei elliptic curves defined over Qalg. Let Z ⊂ X be an
irreducible subvariety. If the set of special points in Z (C) is Zariski
dense in Z (C), then Z is a special subvariety.



Steps of the proof

The proof uses o-minimality in a similar manner as for the proof of
the Manin-Mumford conjecture.

I Construct a covering π : Z 7→ Z (C), definable in an o-minimal
structure, such that the preimage of special points are nice.

I Characterize the algebraic part of Z with the help of a special
locus.

I Count the rational points in the transcendental part of Z by
applying Pila-Wilkie, conclude that Z (C) must have only
finitely many special points outside of its special locus.

I Now the set of special points in the special locus is dense in
Z , giving us that Z is a special subvariety.



o-minimal structures

Recall that the following structures are o-minimal:

I R as a pure ordered field,
I Rexp with a symbol for the real exponential map,
I Ran with a symbol for each analytic function restricted to the

interval [0, 1],
I Ran,exp with restricted analytic functions and full exponential.



Covering abelian varieties
This was done in the proof of Manin-Mumford. We recall the
details:

I Since A(C) is a complex Lie group, it has an exponential map
exp : A 7→ A(C).

I ker(exp) is a full lattice in A, so we can find an R-basis of A
in ker(exp).

I We see exp as going from R2g – where g = dim(A(C)) – and
restrict it to the fundamental domain [0, 1)2g .

I The restricted exp is definable in Ran.
I Special points of A, i.e. torsion points, correspond exactly to

rational points of [0, 1)2g .
We will use this covering for products of elliptic curves. For C×,
we use the much simpler map z → e2πiz , restricted to the band
0 6 <(z) < 1, definable in Ran,exp.
As for modular curves, the covering jΓ : H 7→ Y is very nice. We
need to restrict it to a fundamental domain. We will do it for
A1(C), but the same goes for any modular curve Y .



Covering modular curves
Consider F =

{
z ∈ C

∣∣∣ −1
2 6 <(z) < 1

2 & |z | > 1
}

:

F

-1 - 1
2

0 1
2

1

Recall that j(τ) = J(e2πiτ ) with J(q) = 1+744q+···
q .

I exp : τ → e2πiτ = e−2π=(τ)(cos(2π<(τ)) + i sin(2π<(τ))) is
definable in Ran,exp when restricted to F .

I
∣∣e2πiτ ∣∣ = e−2π=(τ) 6 e−π

√
3, thus exp(F) is included in the

square S =
{

z ∈ C
∣∣∣ |<(z)| 6 e−π

√
3 & |=(z)| 6 e−π

√
3
}

.
I J |S , seen as a function of R2, is definable in Ran as it is the

quotient of a restricted analytic function by a polynomial.
In the end, j |F = J |S ◦ exp |F (2πiτ) is definable in Ran,exp.



Prespecial points

By definition, preimages by jΓ of special points of a modular curve
Y are exactly τ ∈ H such that Eτ has CM.

Proposition
Eτ has CM, i.e it has a non-trivial endomorphism, iff
[Q(τ) : Q] = 2.

Now we cover X = Y1 × · · · × Yn × E1 × · · · × Em × (C×)` with

Π = jΓ1 × · · · × jΓn × exp : Hn ×R2(m+`) 7→ X (C),

and we consider π, its restriction to a fundamental domain X. π is
then definable in Ran,exp and the prespecial points are quadratic
imaginaries – in R2 – for the 2n first coordinates and (some)
rational points for the next 2(m + `).



The algebraic part

We will apply Pila-Wilkie counting theorem to Z = π−1(Z (C)).
First, we need to determine its algebraic part.

We define the special Locus SpL(Z ) to be the union of all positive
dimensional weakly special subvarieties of Z , and we have the
following:

Lemma (to be done next week)

π(Zalg) = SpL(Z ).

It now suffices to prove that Ztr contains only finitely many
prespecial points; then by assumption the set of special points in
SpL(Z ) is dense in Z and we conclude.

Note: the proof of this lemma already uses Pila-Wilkie.



The transcendental part
We obtain an upper bound on the number of prespecial points in
the transcendental part by the mean of Pila-Wilkie:

#Ztr(Q, t) 6 Ctε.

On the other hand, we obtain a lower bound as follow:
Lemma (to be done next week)
If X is defined over a number field k, then there is a constant
C = C(X , k) such that for any prespecial point x ∈ X, we have:

[k(π(x)) : k] > CH(x)
1
2

.
This means that a given prespecial point will give rise to many
others. If some prespecial point had big enough height, these lower
and upper bounds would become incompatible; thus there is a
bound on the height of prespecial points in Ztr, so there must be
only finitely many of them.



To be continued

If you have any question or remark, don’t hesitate!
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