Pila's proof of the André-Oort conjecture - pt.1

Blaise Boissonneau PhD student of Franziska Jahnke

WWU, Münster

February 9, 2021

Goal

Conjecture (André-Oort)

Let X be a Shimura variety and let Σ be a set of special points in X. Let V be the Zariski closure of Σ . Then the irreducible components of V are special subvarieties.

In 2011, Pila proved AOC in the case where X is a product of modular curves, elliptic curves, and copies of \mathbb{C}^{\times} (see [Pil11]). We will expose his proof in this talk and in next week's talk, following Scanlon's formulation (see [Sca17], sec. 5.2).

The *j*-invariant

We recall some properties of the function $j : \mathbb{H} \mapsto \mathbb{A}^1(\mathbb{C})$:

- ▶ *j* is surjective.
- j is invariant under the action of SL₂(ℤ), and induces an isomorphism ℍ/ SL₂(ℤ) ≅ A¹(ℂ).
- ▶ j is complex analytic or real analytic when we identify C with R² in the usual way.
- ▶ For any $\tau \in \mathbb{H}$, we consider the elliptic curve $E_{\tau} = \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$. We have $E_{\tau} \cong E_{\tau'}$ iff $j(\tau) = j(\tau')$.

With help of the last fact, we can consider $\mathbb{A}^1(\mathbb{C})$ as a moduli space of elliptic curves, that is, to each point $j(\tau) \in \mathbb{A}^1(\mathbb{C})$ corresponds an isomorphism class of elliptic curves. When seen as a moduli space, we call $\mathbb{A}^1(\mathbb{C})$ the *j*-line.

The *j*-line is the prototypical example of a modular curve.

Modular curves

Definition (congruence subgroups)

- ► The principal congruence subgroup of order *n* is $\Gamma(n) = \{A \in SL_2(\mathbb{Z}) \mid A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod n\}.$
- A congruence subgroup is any subgroup Γ of SL₂(Z) containing Γ(n) for some n.

Recall that $SL_2(\mathbb{Z})$ acts on $\mathbb{H} = \{ \tau \in \mathbb{C} \mid \Im(\tau) > 0 \}$ by:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau \to \frac{a\tau+b}{c\tau+d}$$

Proposition (C.13.12 in [Sil86])

Let Γ be a congruence subgroup, then there exist a smooth affine curve Y_{Γ} and a complex analytic function $j_{\Gamma} : \mathbb{H} \mapsto Y_{\Gamma}$ invariant under the action of Γ and inducing an isomorphism $\mathbb{H}/\Gamma \cong Y_{\Gamma}$. We call Y_{Γ} a modular curve and j_{Γ} its canonical covering. Note that if $\Gamma = SL_2(\mathbb{Z})$, then $j_{\Gamma} = j$ and $Y_{\Gamma} = \mathbb{A}^1(\mathbb{C})$.

Special points

Fix a modular curve Y and consider its canonical covering $j_{\Gamma} : \mathbb{H} \mapsto Y$. We can then see Y as a weak moduli space of elliptic curves: to each $y \in Y$ corresponds $\{E_{\tau} \mid \tau \in \mathbb{H}, j_{\Gamma}(\tau) = y\}$. Since $j_{\Gamma}(\tau) = j_{\Gamma}(\tau')$ iff τ and τ' are Γ -conjugates, those classes only contain isomorphic elliptic curves; but some isomorphic elliptic curves might lie in different classes. When seen as a weak moduli space, we call Y the j_{Γ} -line.

Definition (Special points)

- If Y is the j_Γ-line, then we call y ∈ Y special if the corresponding class of elliptic curves has Complex Multiplication (CM).
- If A is an abelian variety, then we call a ∈ A special if it is a torsion point. This include the case where A is an elliptic curve or C[×].

A point $(x, y) \in X \times Y$ is special if x and y are both special.

Special subvarieties of modular curves

Let $X = Y_1 \times \cdots \times Y_n$ be a product of modular curves. Fix a partition S of $\{1, \dots, n\}$. If $s \in S$ is not a singleton, fix $g_i \in GL_2(\mathbb{Q})$ for each $i \in s$. We call a subvariety Z of X special if $Z = \prod_{s \in S} Z_s$, each Z_s is a subvariety of $\prod_{i \in s} Y_i$, and:

- If s is a singleton, Z_s is a singleton containing only a special point;
- If s is not a singleton, $Z_s = (\prod_{i \in s} j_{\Gamma_i} \circ g_i)(\mathbb{H}).$

In the case where $X = \mathbb{A}^n(\mathbb{C})$, then special subvarieties can equivalentely be defined with the help of modular polynomials Φ_n :

Proposition (folklore (Hilbert?))

For each n > 0, there exists a minimal polynomial $\Phi_n \in \mathbb{Z}[X, Y]$ such that $\Phi_n(j(n\tau), j(\tau)) = 0$.

A special subvariety of $\mathbb{A}^n(\mathbb{C})$ is then defined by equations of the form $x_k = z$ for z special or $\Phi_n(x_i, x_j) = 0$.

Pila's theorem

Definition (special subvarieties of abelian varieties)

Let A be an abelian variety, let $B \ge A$ be an algebraic subvariety, and let $a \in A$ be special (i.e. torsion); then we call a + B a special subvariety.

For a product of the form $Y_1 \times \cdots \times Y_n \times A$, special subvarieties are $Z \times B$ with Z special in $Y_1 \times \cdots \times Y_n$ and B special in A.

Theorem (Pila – AOC)

Let $X = Y_1 \times \cdots \times Y_n \times E_1 \times \cdots \times E_m \times (\mathbb{C}^{\times})^{\ell}$ with Y_i modular curves and E_i elliptic curves defined over \mathbb{Q}^{alg} . Let $Z \subset X$ be an irreducible subvariety. If the set of special points in $Z(\mathbb{C})$ is Zariski dense in $Z(\mathbb{C})$, then Z is a special subvariety.

Steps of the proof

The proof uses o-minimality in a similar manner as for the proof of the Manin-Mumford conjecture.

- Construct a covering π : 3 → Z(C), definable in an o-minimal structure, such that the preimage of special points are *nice*.
- Characterize the algebraic part of 3 with the help of a special locus.
- ► Count the rational points in the transcendental part of 3 by applying Pila-Wilkie, conclude that Z(C) must have only finitely many special points outside of its special locus.
- Now the set of special points in the special locus is dense in Z, giving us that Z is a special subvariety.

Recall that the following structures are o-minimal:

- \mathbb{R} as a pure ordered field,
- \mathbb{R}_{exp} with a symbol for the *real* exponential map,
- R_{an} with a symbol for each analytic function *restricted to the interval* [0, 1],
- $\mathbb{R}_{an,exp}$ with restricted analytic functions and full exponential.

Covering abelian varieties

This was done in the proof of Manin-Mumford. We recall the details:

- Since A(ℂ) is a complex Lie group, it has an exponential map exp : 𝔅 → A(ℂ).
- ▶ ker(exp) is a full lattice in 𝔅, so we can find an ℝ-basis of 𝔅 in ker(exp).
- We see exp as going from ℝ^{2g} where g = dim(A(ℂ)) and restrict it to the fundamental domain [0, 1)^{2g}.
- The restricted exp is definable in \mathbb{R}_{an} .
- Special points of A, i.e. torsion points, correspond exactly to rational points of [0, 1)^{2g}.

We will use this covering for products of elliptic curves. For \mathbb{C}^{\times} , we use the much simpler map $z \to e^{2\pi i z}$, restricted to the band $0 \leq \Re(z) < 1$, definable in $\mathbb{R}_{an,exp}$.

As for modular curves, the covering $j_{\Gamma} : \mathbb{H} \mapsto Y$ is very nice. We need to restrict it to a fundamental domain. We will do it for $\mathbb{A}^1(\mathbb{C})$, but the same goes for any modular curve Y.

Covering modular curves Consider $\mathcal{F} = \left\{ z \in \mathbb{C} \mid -\frac{1}{2} \leq \Re(z) < \frac{1}{2} \& |z| \ge 1 \right\}$:

Recall that $j(\tau) = J(e^{2\pi i\tau})$ with $J(q) = \frac{1+744q+\cdots}{q}$. • $\exp: \tau \to e^{2\pi i\tau} = e^{-2\pi\Im(\tau)}(\cos(2\pi\Re(\tau)) + i\sin(2\pi\Re(\tau)))$ is definable in $\mathbb{R}_{an,exp}$ when restricted to \mathcal{F} . • $|e^{2\pi i\tau}| = e^{-2\pi\Im(\tau)} \leqslant e^{-\pi\sqrt{3}}$, thus $\exp(\mathcal{F})$ is included in the square $S = \left\{ z \in \mathbb{C} \mid |\Re(z)| \leqslant e^{-\pi\sqrt{3}} \& |\Im(z)| \leqslant e^{-\pi\sqrt{3}} \right\}$. • $J|_S$, seen as a function of \mathbb{R}^2 , is definable in \mathbb{R}_{an} as it is the quotient of a restricted analytic function by a polynomial. In the end, $j|_{\mathcal{F}} = J|_S \circ \exp|_{\mathcal{F}}(2\pi i\tau)$ is definable in $\mathbb{R}_{an,exp}$.

Prespecial points

By definition, preimages by j_{Γ} of special points of a modular curve Y are exactly $\tau \in \mathbb{H}$ such that E_{τ} has CM.

Proposition

 E_{τ} has CM, i.e it has a non-trivial endomorphism, iff $[\mathbb{Q}(\tau):\mathbb{Q}] = 2.$

Now we cover
$$X = Y_1 \times \cdots \times Y_n \times E_1 \times \cdots \times E_m \times (\mathbb{C}^{\times})^{\ell}$$
 with

$$\Pi = j_{\Gamma_1} \times \cdots \times j_{\Gamma_n} \times \exp : \mathbb{H}^n \times \mathbb{R}^{2(m+\ell)} \mapsto X(\mathbb{C}),$$

and we consider π , its restriction to a fundamental domain \mathfrak{X} . π is then definable in $\mathbb{R}_{\text{an,exp}}$ and the prespecial points are quadratic imaginaries – in \mathbb{R}^2 – for the 2n first coordinates and (some) rational points for the next $2(m + \ell)$.

The algebraic part

We will apply Pila-Wilkie counting theorem to $\mathfrak{Z} = \pi^{-1}(Z(\mathbb{C}))$. First, we need to determine its algebraic part.

We define the special Locus SpL(Z) to be the union of all positive dimensional weakly special subvarieties of Z, and we have the following:

Lemma (to be done next week)

$$\pi(\mathfrak{Z}^{\mathsf{alg}}) = \mathsf{SpL}(Z).$$

It now suffices to prove that \mathfrak{Z}^{tr} contains only finitely many prespecial points; then by assumption the set of special points in SpL(Z) is dense in Z and we conclude.

Note: the proof of this lemma already uses Pila-Wilkie.

The transcendental part

We obtain an upper bound on the number of prespecial points in the transcendental part by the mean of Pila-Wilkie:

 $\#\mathfrak{Z}^{\mathsf{tr}}(\mathbb{Q},t)\leqslant Ct^{\epsilon}.$

On the other hand, we obtain a lower bound as follow:

Lemma (to be done next week)

If X is defined over a number field k, then there is a constant C = C(X, k) such that for any prespecial point $x \in \mathfrak{X}$, we have:

 $[k(\pi(x)):k] \ge CH(x)^{\frac{1}{2}}$

This means that a given prespecial point will give rise to many others. If some prespecial point had big enough height, these lower and upper bounds would become incompatible; thus there is a bound on the height of prespecial points in \mathfrak{Z}^{tr} , so there must be only finitely many of them.

To be continued

If you have any question or remark, don't hesitate!

- Joseph H. Silverman, *The Arithmetic of Elliptic Curves*, GTM106, Springer-Verlag, 1986.
- Jonathan Pila, *O-minimality and the André-Oort conjecture* for ℂⁿ, Ann. of Math. (2), 173(3) (2011), 1779–1840.
- Thomas Scanlon, O-minimality as an approach to the André-Oort conjecture, in: Around the Zilber-Pink conjecture, Panoramas et Synthèses, no. 52 (2017), 111–165.