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Goal

Conjecture (André-Oort)

Let X be a Shimura variety and let ¥ be a set of special points in
X. Let V' be the Zariski closure of . Then the irreducible
components of V' are special subvarieties.

In 2011, Pila proved AOC in the case where X is a product of
modular curves, elliptic curves, and copies of C* (see [Pill1]). We
will expose his proof in this talk and in next week’s talk, following
Scanlon’s formulation (see [Scal7], sec. 5.2).



The j-invariant

We recall some properties of the function j : T — A(C):

> j is surjective.

» j is invariant under the action of SL,(Z), and induces an
isomorphism T/ SLy(Z) = AY(C).

> j is complex analytic or real analytic when we identify C with
R? in the usual way.

» For any 7 € H, we consider the elliptic curve
E. =C/(Z + Z7). We have E. = E./ iff j(1) = j(7').

With help of the last fact, we can consider Al(C) as a moduli
space of elliptic curves, that is, to each point j(7) € A(C)
corresponds an isomorphism class of elliptic curves. When seen as
a moduli space, we call A(C) the j-line.

The j-line is the prototypical example of a modular curve.



Modular curves

Definition (congruence subgroups)

» The principal congruence subgroup of order n is
F(n)={AeSLy(Z) | A=(}9) mod n}.

» A congruence subgroup is any subgroup I of SLy(7Z)
containing I'(n) for some n.

Recall that SL»(Z) acts on H = {7 € C | &(7) > 0} by:

(25).7— 2

Proposition (C.13.12 in [Sil86])

Let T be a congruence subgroup, then there exist a smooth affine
curve Yr and a complex analytic function jr : H — Yy invariant
under the action of I' and inducing an isomorphism H/T" = Yr.

We call Yr a modular curve and ji its canonical covering. Note
that if [ = SLy(Z), then jr = j and Y = A(C).



Special points

Fix a modular curve Y and consider its canonical covering

jr : H+— Y. We can then see Y as a weak moduli space of elliptic
curves: to each y € Y corresponds {E; | 7 € H, jr(7) = y}.

Since jr(7) = jr(7') iff 7 and 7/ are I'-conjugates, those classes
only contain isomorphic elliptic curves; but some isomorphic elliptic
curves might lie in different classes. When seen as a weak moduli
space, we call Y the jr-line.

Definition (Special points)

> If Y is the jr-line, then we call y € Y special if the
corresponding class of elliptic curves has Complex
Multiplication (CM).

> If Ais an abelian variety, then we call a € A special if it is a
torsion point. This include the case where A is an elliptic
curve or C*.

A point (x,y) € X x Y is special if x and y are both special.



Special subvarieties of modular curves

Let X = Y7 X --- x Y, be a product of modular curves. Fix a
partition S of {1,---,n}. If s € S is not a singleton, fix
gi € GL2(Q) for each i € s. We call a subvariety Z of X special if
Z = [lses Zs, each Zs is a subvariety of [];c, Y;, and:

» If s is a singleton, Z; is a singleton containing only a special

point;

» If s is not a singleton, Zs = (I];csJr; © &i)(IH).
In the case where X = A"(C), then special subvarieties can
equivalentely be defined with the help of modular polynomials ®,:

Proposition (folklore (Hilbert?))

For each n > 0, there exists a minimal polynomial ®, € Z[X, Y]
such that ®,(j(n7), (7)) = 0.

A special subvariety of A"(C) is then defined by equations of the
form xx = z for z special or ®,(x;, x;) = 0.



Pila’s theorem

Definition (special subvarieties of abelian varieties)

Let A be an abelian variety, let B > A be an algebraic subvariety,
and let a € A be special (i.e. torsion); then we call a+ B a special
subvariety.

For a product of the form Y; x --- x Y, X A, special subvarieties
are Z x B with Z special in Y1 X --- X Y,, and B special in A.

Theorem (Pila — AOC)

Let X =Yy x - X Yy x Ey X -+ %X Epy x (CX)¢ with Y; modular
curves and E; elliptic curves defined over Q8. Let Z C X be an
irreducible subvariety. If the set of special points in Z(C) is Zariski
dense in Z(C), then Z is a special subvariety.



Steps of the proof

The proof uses o-minimality in a similar manner as for the proof of
the Manin-Mumford conjecture.

» Construct a covering 7 : 3 — Z(C), definable in an o-minimal
structure, such that the preimage of special points are nice.

» Characterize the algebraic part of 3 with the help of a special
locus.

» Count the rational points in the transcendental part of 3 by
applying Pila-Wilkie, conclude that Z(C) must have only
finitely many special points outside of its special locus.

» Now the set of special points in the special locus is dense in
Z, giving us that Z is a special subvariety.



o-minimal structures

Recall that the following structures are o-minimal:

» IR as a pure ordered field,
> Rexp with a symbol for the real exponential map,

» R., with a symbol for each analytic function restricted to the
interval [0, 1],

> Ranexp With restricted analytic functions and full exponential.



Covering abelian varieties

This was done in the proof of Manin-Mumford. We recall the
details:

» Since A(C) is a complex Lie group, it has an exponential map
exp : A — A(C).

» ker(exp) is a full lattice in 2, so we can find an R-basis of 2
in ker(exp).

» We see exp as going from R?8 — where g = dim(A(C)) - and
restrict it to the fundamental domain [0, 1)28.

» The restricted exp is definable in R,,.

» Special points of A, i.e. torsion points, correspond exactly to
rational points of [0,1)%8,

We will use this covering for products of elliptic curves. For C*,
we use the much simpler map z — €™, restricted to the band
0 < R(z) < 1, definable in Ran,exp-
As for modular curves, the covering jr : H — Y is very nice. We
need to restrict it to a fundamental domain. We will do it for
Al(C), but the same goes for any modular curve Y.



Covering modular curves
Consider F = {z eC ‘ —I<RE2) <& |z| > 1}:

Recall that j(7) = J(€*™™) with J(q) = %.
> exp i T — €2 = e 2™ (cos(2nR(7)) + i sin(27R(7))) is
definable in Ry, exp When restricted to F.
> 27T = e72m3(7) e=™3, thus exp(F) is included in the
square S = {z eC ’ R(2)] < e™V3& [S(2)] < e‘”ﬁ}.
» J|s, seen as a function of R?, is definable in Ray as it is the
quotient of a restricted analytic function by a polynomial.
In the end, j|7 = J|s o exp |#(27iT) is definable in Ran exp-



Prespecial points

By definition, preimages by jr of special points of a modular curve
Y are exactly 7 € H such that E; has CM.

Proposition
E. has CM, i.e it has a non-trivial endomorphism, iff

[Q(T) : Q] = 2.
Now we cover X = Y1 X -+ x Yy x Ey x --- x Ep, x (€*)* with
M=jr, x-- X jr, x exp : H" x R2™0) 5 X(Q),

and we consider 7, its restriction to a fundamental domain X. 7 is
then definable in Ranexp and the prespecial points are quadratic
imaginaries — in R? — for the 2n first coordinates and (some)
rational points for the next 2(m + ¢).



The algebraic part

We will apply Pila-Wilkie counting theorem to 3 = 7~ 1(Z(C)).
First, we need to determine its algebraic part.

We define the special Locus SpL(Z) to be the union of all positive
dimensional weakly special subvarieties of Z, and we have the
following:

Lemma (to be done next week)

©(3%%) = SpL(2).
It now suffices to prove that 3' contains only finitely many
prespecial points; then by assumption the set of special points in

SpL(Z) is dense in Z and we conclude.

Note: the proof of this lemma already uses Pila-Wilkie.



The transcendental part

We obtain an upper bound on the number of prespecial points in
the transcendental part by the mean of Pila-Wilkie:

#3"(Q, t) < Cte.
On the other hand, we obtain a lower bound as follow:

Lemma (to be done next week)

If X is defined over a number field k, then there is a constant
C = C(X, k) such that for any prespecial point x € X, we have:

N|—=

[k(r(x)) : k] > CH(x)

This means that a given prespecial point will give rise to many
others. If some prespecial point had big enough height, these lower
and upper bounds would become incompatible; thus there is a
bound on the height of prespecial points in 3%, so there must be
only finitely many of them.



To be continued

If you have any question or remark, don’t hesitate!
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