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The content of this talk is adapted from I. Ben Yaacov, A. Beren-
stein, C. Ward Henson & A. Usvyatsov, Model theory for metric struc-
tures, sections 9-10.

convention When not stated otherwise,M is always a (complete) metric
structure with signature L, and A is a subset of M . We let letters like x
denote variables or tuples of variables, and we let sup or inf run over tuples.
We write we for many cups of coffee, the induced lack of sleep and I.

Definability
Recall that in continuous logic:

• A predicate P : Mn → [0, 1] is definable over A if it is a uniform limit
of L(A)-formulas;

• a set D ⊆Mn is definable if P (x) = dist(x,D) is a definable predicate;

• a function f : Mn →M is definable if P (x, y) = d(f(x), y) is a definable
predicate.

WhenM is sufficiently saturated, functions are definable iff their graphs
are type-definable:

Proposition 1. If M is |A|+-saturated, then a function f is definable over
A inM iff its graph Γf is type-definable over A inM.

Definability of functions behaves well under extensions or restrictions:

Proposition 2. if f : Mn →M is definable over A, then:
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(a) For any N 4M with A ⊆ N , the restriction of f to N is a function
(its image stays in N) definable in N over A;

(b) For any N 4M, there is a function g extending f to N definable in
N over A.

Combining those results, we see that the composition of two functions
definable over A is definable over A:

• If f and g are definable over A, then their graphs are definable over A,
and then Γf◦g is type definable:

Γf◦g = {(x, z)| inf
y
d(z, f(y)) < ε ∧ d(y, g(x)) < ε}ε>0

• Moving up to a sufficiently saturated extension N < M, we have
functions f̂ and ĝ extending f and g to N ; since the graph of their
composition is type-definable over A, their composition is definable
over A.

• Going down again toM, the restriction of f̂ ◦ ĝ is definable over A.

Extension by definition
Moving from definability in a model, we consider definability in a theory: in
all the following, L0 ⊆ L are signatures and T , T0 are an L-theory and an
L0-theory.

Definition 3. We say that T0 is the restriction of T to L0, or equivalently
that T is a conservative extension of T0, if for every closed L0-condition E
we have:

T � E ⇔ T0 � E.

For T to be a conservative extension of T0 it suffices to have T0 ⊆ T and
to have an extension of every model of T0 to a model of T ; it is however not
necessary.

Definition 4. We say that an L-formula ϕ(x) is definable in T over L0 if
for each ε > 0 there is an L0-formula ψ(x) such that:

T � (sup
x
|ϕ(x)− ψ(x)|) 6 ε.

When ϕ is P (x) for a predicate P ∈ L or d(f(x), y) for a function f ∈ L,
we say that P or f are definable in T over L0.
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Remark 5. Saying that predicates P and functions f are definable in Th(M)
(seen as an L(M) ∪ {P, f}-theory) over L(A) is the same as saying they are
definable inM over A.

Definition 6. We say that T is an extension by definitions of T0 if T is a
conservative extension of T0 such that every nonlogical symbol of L is defined
in T over L0.

If T is a conservative extension of T0, consider πn : Sn(T ) → Sn(T0)
defined by πn(p) = {ϕ ∈ p | ϕ an L0-formula}:

• πn is continuous with respect to the logic topology: every closed set
in Sn(T0) is CΓ(T0) = {p ∈ Sn(T0) | Γ ⊆ p} for some L0-partial type Γ,
now the preimage of such a set is CΓ(T ).

• πn is surjective: πn(Sn(T )) = CΓ(T0) for some L0-partial type Γ since
it is a closed subset of Sn(T0). Now for any ϕ(x) ∈ Γ, ϕ is in every
type of Sn(T ), so we have T � supx ϕ(x) = 0, therefore the same holds
for T0 and any p ∈ Sn(T0) contains Γ.

Proposition 7. If T is an extension by definitions of T0, then πn is injective
and every L-formula is defined in T over L0.

Proof. Take p1, p2 ∈ Sn(T ) with πn(p1) = πn(p2), take realisations a1 and a2

in modelsM1,M2 � T .

• (M1|L0 , a1) ≡ (M2|L0 , a2) since any L0(a1)-formula verified by M1 is
in the type of a1 which is the same as the type of a2;

• There exists an isomorphism f : (M1|L0 , a1)D → (M2|L0 , a2)D for some
ultrafilter D;

• f extends uniquely to (M1)D since T is an extension by definitions of
T0, now let N = f((M1)D);

• Now N is a model of T and N|L0 = (M2|L0)D = (M2)D|L0 , and since
any model of T is uniquely determined by its reduced to L0, we have
N = (M2)D;

• f is an isomorphism form (M1)D to (M2)D mapping a1 to a2, so they
must have the same type in Sn(T ), so to say p1 = p2.
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Let ϕ be an L-formula, and consider Φ = ϕ̃ ◦ π−1
n , which exists since πn

is bijective. Φ : Sn(T0) → [0, 1] is continuous, therefore there exists some
L0-formulas (ψk)k∈N such that ψ̃k → Φ uniformely. Now:

sup
p∈Sn(T0)

∣∣∣ψ̃(p)− Φ(p)
∣∣∣ < ε⇒ sup

p∈Sn(T )

∣∣∣ψ̃(πn(p))− Φ(πn(p))
∣∣∣ < ε

But Φ ◦ πn is just ϕ̃ and ψ̃ ◦ πn is just ψ̃ when ψ is seen as an L-formula.

Corollary 8. Let (Tα)α<γ be theories such that Tα+1 is an extension by def-
inition of Tα and Tλ =

⋃
α<λ Tα for λ a limit ordinal. Then any Tα is an

extension by definition of T0.

Proof. By induction:

• If Tα is an extension by definitions of T0 and Tα+1 is an extension by
defintion of Tα, every nonlogical symbol of Lα+1 is approached (for ε

2
)

by an Lα-formula, which is then approached by an L0-formula.

• If Tα is an extension by definitions of T0 for all α < λ limit, any
nonlogical symbol in Lλ lies in some Lα.

Corollary 9. If T is an extension by definitions of T0, then every model of
T0 can be extended uniquely to a model of T .

Proof. Unicity was done before. Existence: let M0 � T0. As seen before
π0 is bijective, so T1 = π−1

0 (Th(M0)) ∈ Sn(T ) is the unique completion of
T ∪ Th(M0). Let M � T1 be |M0|+-saturated, and assume M0 4 M|L0
(in general they are elementarily equivalent). Now by a stronger version of
proposition 2, M0 is closed under fM for function symbols f ∈ L. Hence
we can interpret symbols of L in M0 by reducting them from M. Now by
proposition 7 every L-formula is defined in T over L0, thereforeM0 extended
this way is a model of T .

Remark 10. A standard way to create extensions by defintions would be to
add definable predicates or functions to the language; one can show that
it works when adding to the theory axioms saying that our new symbol is
approached by the sequence defining it.

Note also that the converse of corollary 9 hold, one can show it with a
continuous version of Beth’s theorem.
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Algebraic and definable closures
Definition 11. We say that a ∈ Mn is definable in M over A if {a} is
definable in M over A, and algebraic in M over A if it is contained in a
compact set C ⊆Mn definable inM over A.

Equivalently we could define it on the coordinates:

Proposition 12. a = (a1,· · ·, an) is A-definable/algebraic iff every ai is A-
definable/algebraic.

Proof. If a is A-definable, then d(xi, ai) = infy1 · · · infyn d((y,· · ·, xi,· · ·, yn), a)
is definable; conversely if each ai is A-definable, then d(x, a) = maxi(d(xi, ai))
is A-definable.

If C ⊆ Mn is a compact A-definable set, we want to prove that each
projection Ci is compact (clear) and A-definable. The following is a definable
predicate:

Pi(x) = inf
y∈C

d(xi, yi)

Now dist(xi, Ci) = Pi(xi,· · ·, xi) and therefore a A-algebraic implies each ai
A-algebraic.

If Ci ⊆ M are compact A-definable sets, then C = C1 × · · · × Cn is
compact, and:

dist(x,C) = inf
y∈C

max
i

(d(xi, yi))

Therefore C is A-definable and if every ai is A-algebraic, then a as well.

Remark 13. Instead of working with definable sets, we could use zerosets; in
sufficiently saturated (namely, ℵ1) models, these notions agree.

We write dclM(A) for the set of all A-definable elements of M and
aclM(A) for the set of all A-definable elements of M . We will see that these
definable and algebraic closures don’t depend onM, and will therefore drop
the subscript in due time.

Proposition 14. For any N < M, if C ⊆ Nn is A-definable in N and
C ∩Mn is compact, then already C ⊆Mn.

Proof. Let Q : Nn → [0, 1] be the A-definable predicate such that Q(x) =
dist(x,C). Let P be its restriction to Mn, then (M, P ) 4 (N , Q) and
P (x) = dist(x,C ∩ Mn). For ε > 0, we can cover C by a finite number
of open balls of centers c1,· · ·, cm and radius ε. Now if P (x) < ε, for some j
we have d(x, cj) < ε; therefore:

(M, P ) � sup
x

min(ε −̇ P (x),min
j

(d(x, cj)) −̇ 2ε) = 0
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Now (N , Q) satisfies the same condition with Q, and open balls of centers
c1,· · ·, cm and radius 2ε cover C. This give us that every element of C is the
limit of a sequence of elements of Mn, which in turn means C ⊆Mn.

Corollary 15. If N <M, then:

dclM(A) = dclN (A) & aclM(A) = aclN (A)

Proof. By proposition 14, if C is compact and A-definable in N , then C∩Mn

is compact, so C ⊆Mn; it is then A-definable inM, and aclN (A) ⊆ aclM(A).
Since singletons are compact, also dclN (A) ⊆ dclM(A).

For the other inclusion, let C ⊆ Mn be compact and A-definable inM.
Let P (x) = dist(x,C), then P : Mn → [0, 1] is A-definable in M. We
can extend it to Q : Nn → [0, 1] A-definable in N with (M, P ) 4 (N , Q).
Let D be the zeroset of Q, we then have Q(x) = dist(x,D). But now by
proposition 14 D = D ∩ Mn = C, therefore C is indeed A-definable in
N .

Proposition 16. (a) A ⊆ dcl(A);

(b) if A ⊆ dcl(B) then dcl(A) ⊆ dcl(B) (so dcl(dcl(A)) = dcl(A));

(c) if a ∈ dcl(A) then there is a countable A0 ⊆ A with a ∈ dcl(A0);

(d) if A is a dense subset of B then acl(A) = dcl(B).
The same is true when replacing dcl by acl.

Proposition 17. Any elementary map α : A→ B extends to an elementary
map α′ : acl(A)→ acl(B). If α happens to be surjective, then α′ also.
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