Morley Rank, non-forking, canonical bases Seminar on ample theories

Blaise Boissonneau

October 18, 2021

Source This talk contains material from classical textbooks, mostly from chapters 6,7 and 8 of Tent-Ziegler and chapter 6 and 8 from Marker.

Conventions We write lowercase letters for single elements or finite tuples. We write " \subset " for subsets – proper or not. We write " \triangle " for symmetric difference of formulas: $\varphi \triangle \psi = (\varphi \lor \psi) \land \neg (\varphi \land \psi)$. We write " \sqcup " for disjoint unions of formulas, so $\varphi \sqcup \psi$ is the formula $\varphi \lor \psi$, but it is only defined on disjoint formulas. We write we for many cups of coffee, the induced lack of sleep and I.

Morley Rank

Ordinal-valued notion of dimension for formulas or definable sets.

Definition and basic properties

In a given structure \mathcal{M} , we define by induction:

- $MR_{\mathcal{M}}(\varphi) \geqslant 0$ iff φ is consistent;
- $MR_{\mathcal{M}}(\varphi) \geqslant \alpha + 1$ iff there are $(\varphi_i)_{i < \omega}$ disjoint, each implying φ , and each of $MR \geqslant \alpha$;
- $MR_{\mathcal{M}}(\varphi) \geqslant \lambda$ with λ a limit ordinal iff $MR(\varphi) \geqslant \alpha$ for all $\alpha < \lambda$.

Note that φ and φ_i are allowed to have different parameters.

Given a complete theory T, we define $MR_T(\varphi(x, a))$ to be $MR_{\mathcal{M}}(\varphi)$ for $\mathcal{M} \models T \aleph_0$ -saturated and containing a.

Lemma 1. $MR_T(\varphi)$ is well defined, ie, it does not depend on the choice of an \aleph_0 -saturated model.

Proof.

- If \mathcal{M} is \aleph_0 -saturated and $\operatorname{tp}_{\mathcal{M}}(a) = \operatorname{tp}_{\mathcal{M}}(b)$, then $\operatorname{MR}_{\mathcal{M}}(\varphi(x,a)) = \operatorname{MR}_{\mathcal{M}}(\varphi(x,b))$.
 - If MR=0 it's clear, we proceed by induction.
 - Anytime $\varphi(x, a) = \varphi_1(x, c_1) \sqcup \cdots \sqcup \varphi_n(x, c_n)$, by saturation we can find d_1, \cdots, d_n such that $\operatorname{tp}_{\mathcal{M}}(a, \overline{c}) = \operatorname{tp}_{\mathcal{M}}(b, \overline{d})$.
- If $\mathcal{M} \preceq \mathcal{N}$ are both \aleph_0 -saturated, then $\mathrm{MR}_{\mathcal{M}}(\varphi) = \mathrm{MR}_{\mathcal{N}}(\varphi)$.
 - If MR=0 it's clear, we proceed by induction.
 - $-\operatorname{MR}_{\mathcal{M}}(\varphi) \leqslant \operatorname{MR}_{\mathcal{N}}(\varphi)$ is clear.
 - In the other direction, we might have parameters from \mathcal{N} , but we can replace them by parameters from \mathcal{M} by saturation.

• Let $\mathcal{M} \models T$ containing parameters of φ . Then: $\mathcal{M} \stackrel{\triangleleft}{\swarrow} \stackrel{\mathcal{N}_2}{\sim} \mathcal{N}^*$.

In the following, we assume that structures are at least \aleph_0 -saturated – equivalently, we work in a monster.

It is easy to check that $MR(\varphi \vee \psi) = \max(MR(\varphi), MR(\psi))$. By definition, we have $MR(\varphi) = 0$ iff $\varphi(M)$ is finite (and non-empty). If φ is inconsistent, we write $MR(\varphi) = -\infty$. Since the Morley rank of $\varphi(x, a)$ only depends on $\operatorname{tp}(a)$ and there is no gap in the values of MR, we have:

Proposition 2. If $MR(\varphi) > (2^{|T|})^+$, then $MR(\varphi) \ge \alpha$ for all α ; we write $MR(\varphi) = \infty$.

Definition 3. We define an equivalence relation $\varphi \sim_{\alpha} \psi$ by $MR(\varphi \triangle \psi) < \alpha$. A formula of MR α is α -strongly-minimal if for any ψ , either $\varphi \wedge \psi$ or $\varphi \wedge \neg \psi$ is of MR $< \alpha$.

If a formula is of MR α , the maximal amount of definable subsets of $\varphi(M)$ of MR α is called the Morley Degree of φ .

Proposition 4. $MD(\varphi)$ is well-defined (if $MR(\varphi)$ is not $\pm \infty$): there is a decomposition $\varphi = \varphi_1 \sqcup \cdots \sqcup \varphi_d$, with all φ_i α -strongly-minimal, unique up to \sim_{α} .

Proof. It's clear that if such a decomposition doesn't exist, φ has MR > α . To prove uniqueness, take ψ α -strongly-minimal implying φ ; then there is exactly one φ_i such that $\varphi_i \wedge \psi$ is of rank α , and thus $\psi \sim_{\alpha} \varphi_i$.

- α -strongly-minimal $\Leftrightarrow MR = \alpha, MD = 1$
- $MR(\varphi) = 0 \Rightarrow MD(\varphi) = |\varphi(M)|$
- 0-strongly-minimal $\Leftrightarrow |\varphi(M)| = 1$
- 1-strongly-minimal \Leftrightarrow strongly-minimal as usual

Definition 5. For a type p, we define:

$$\mathrm{MR}(p) = \min_{\varphi \in p}(\mathrm{MR}(\varphi)), \text{ and } \mathrm{MD}(p) = \min_{\varphi \in p, \mathrm{MR}(\varphi) = \mathrm{MR}(p)}(\mathrm{MD}(\varphi))$$

We also write MR(A/B) = MR(tp(A/B)) and similarly for MD.

We have
$$MR(A/B) = 0$$
 iff $A \subset acl(B)$.

In strongly minimal theories

Recall that acl is a pregeometry on strongly-minimal theories:

- $A \subset B \Rightarrow \operatorname{acl}(A) \subset \operatorname{acl}(B)$
- $A \subset \operatorname{acl}(A)$
- $\operatorname{acl}(\operatorname{acl}(A)) = \operatorname{acl}(A)$
- $\operatorname{acl}(A) = \bigcup_{A_0 \subset A \text{ finite}} \operatorname{acl}(A_0)$
- $b \operatorname{acl}(Ac) \setminus \operatorname{acl}(A) \Rightarrow c \in \operatorname{acl}(Ab)$

The last property, called Exchange, might fail outside of strongly minimal theories; the four others always hold.

Recall that a basis for A over B is a subset A' such that $\operatorname{acl}(A'B) = \operatorname{acl}(AB)$ and for any $X \subseteq A'$, $\operatorname{acl}(XB) \subseteq \operatorname{acl}(AB)$. $\dim(A/B)$ is the cardinal of a basis of A over B; this is well defined.

We write $A \downarrow_C B$ if $\dim(a/C) = \dim(a/BC)$ for all finite $a \in A$.

Theorem 6. In a strongly minimal theory, we have:*

$$MR(a_1, \dots, a_n/B) = \dim(a_1, \dots, a_n/B)$$

^{*}here a_1 is a point, not a tuple.

For n = 1, either $\dim(a/B) = 0 \Leftrightarrow a \in \operatorname{acl}(B) \Leftrightarrow \operatorname{MR}(a/B) = 0$, or $\dim(a/B) = 1 \Leftrightarrow a \notin \operatorname{acl}(B) \Leftrightarrow \operatorname{MR}(a/B) \geqslant 1$. By strong minimality, any formula with 1 free variable is of $\operatorname{MR} \leqslant 1$, so we are done.

The strategy for arbitrary n is the same: first we deal with the case $\dim < n$, then with the case $\dim = n$.

Lemma 7. If $b \in \operatorname{acl}(Ca)$, $\operatorname{MR}(b/C) \leqslant \operatorname{MR}(a/C)$.

Proof. We work by induction on $\alpha = MR(a/C)$. If $\alpha = 0$, it is clear that MR(b/C) = 0.

We have MR(b/Ca) = 0, let d = MD(b/Ca). We take $\psi_1(x) \in tp(a/C)$ of MR α , and we take $\psi_2(a,y) \in tp(b/Ca)$ of MR 0 and MD d. We may assume $\mathcal{M} \models \forall x \exists^{\leq d} y \ \psi_2(x,y)$. Now let $\varphi(x,y) = \psi_1(x) \land \psi_2(x,y)$. We have:

$$MR(\exists y \varphi(x, y)) = \alpha \text{ and } |\varphi(a', M)| \leq d.$$

Consider $\chi(y) = \exists x \varphi(x, y)$. We will prove $MR(\chi) \leq \alpha$; since $\chi \in tp(b/A)$, this proves $MR(b/A) \leq \alpha$.

Let χ_i be an infinite family defining disjoint subsets of χ , say with parameters in C'. Let $\psi_i(x) = \exists x(\varphi(x,y),\chi(y))$. ψ_i implies $\exists y\varphi(x,y)$, and since any d+1 of the ψ_i are disjoint, at least one of them must have MR $< \alpha$.

Take any b' realizing $\chi_i(y)$. Then by definition of χ there is a' realizing $\varphi(a',b')$. So $b' \in \operatorname{acl}(C'a')$ and $\operatorname{MR}(a'/C') \leq \operatorname{MR}(\psi_i) < \alpha$, so by induction, $\operatorname{MR}(b'/C') < \alpha$. Because this is true for any b', we conclude $\operatorname{MR}(\chi_i) < \alpha$. \square

This lemma allows us to only consider the case where the a_i are independent over B, that is, $\dim(a_1, \dots, a_n/B) = n$.

Proposition 8. In a strong minimal theory, the type of n independent elements over a given subset is uniquely determined.

Proof. In dim 1 it's clear and has been done last week, prove the rest by induction. \Box

Thus any formula on n free variables must have $MR \leq n$, so in particular, $MR(a_1, \dots, a_n/B) \leq n$.

Remains to prove that if $\dim(a_1,\dots,a_n/B)=n$, $\operatorname{MR}(a_1,\dots,a_n/B)=n$.

- $MR(a_1, \dots, a_n/Ba_1) = n 1.$
- Let $\psi \in \operatorname{tp}(a_1, \dots, a_n/B)$. $\chi(\overline{x}, a_1) = \psi(x_1, \dots, x_n) \wedge x_1 = a_1$ has MR $\geqslant n-1$.
- If $\operatorname{tp}(a/B) = \operatorname{tp}(a_1/B)$, $\operatorname{MR}(\chi(\overline{x}, a)) = n 1$.
- $\{\chi(\overline{x}, a) \mid a \equiv_B a_1\}$ is a disjoint family of subsets of ψ , so $MR(\psi) \geqslant n$.

 \Box_{thm}

Wanna fork?

From now on T is ω -stable; this is equivalent (in a countable language) to saying that the Morley Rank is never ∞ .

Definition 9.

- We write $A \downarrow_C B$ when MR(a/C) = MR(a/BC) for any finite $a \in A$.
- We say that tp(a/BC) forks over C when $a \not\downarrow_C B$.
- For $A \subset B$, $p \in S_n(A)$, $q \in S_n(B)$, we say that the extension $p \subset q$ is forking if MR(p) > MR(q), or equivalently if q forks over A.
- $p \in S_n(C)$ is called stationary if for any $C \subset D$, p has a unique nonforking extension to D.

One can define forking in arbitrary theories but who has time for that? Certainly not us.

Lemma 10. If $p \in S_n(A)$ has MD d and $A \subset \mathcal{M}$, then there are exactly d non-forking extension of p in $S_n(\mathcal{M})$, and they are of MD 1.

Proof. If $\varphi \in p$ realizes MR and MD of φ and $\varphi = \varphi_1 \sqcup \cdots \sqcup \varphi_d$, then complete types over \mathcal{M} containing $p \cup \{\varphi_i\}$ are exactly the non-forking extensions of p.

Proposition 11. If \mathcal{M} is κ -saturated and κ -homogeneous, any type forking over a subset A smaller than κ has at least κ many conjugates over A.

No proof given.

Theorem 12 (Characterization of non-forking). T is stable if and only if there is a special class of extensions of n-types, which we denote by $p \sqsubset q$, with the following properties:

- 1. (Invariance) \sqsubseteq is invariant under $Aut(\mathcal{M})$,
- 2. (Local character) There is a cardinal κ such that for $q \in S_n(M)$ there is $C_0 \subset C$ of cardinality at most κ such that $q|C_0 \sqsubset q$.
- 3. (Weak Boundedness) For all $p \in S_n(A)$ there is a cardinal μ such that p has, for any $A \subset B$, at most μ extensions $q \in S_n(B)$ with $p \sqsubset q$.

If \sqsubset *satisfies in addition:*

- 4. (Existence) For all $p \in S_n(A)$ and $A \subset B$, there is $q \in S_n(B)$ such that $p \sqsubset q$,
- 5. (Transitivity) $p \sqsubset q \sqsubset r \text{ implies } p \sqsubset r$,
- 6. (Weak Monotonicity) $p \sqsubset r$ and $p \subset q \subset r$ implies $p \sqsubset q$,

then \sqsubset coincides with the non-forking relation.

If we have time, we will prove that in stable theories, those conditions characterize non-forking.

Canonical bases

Definition 13.

- $a \in \mathcal{M}$ is called a canonical parameter for a definable set $D \subset \mathcal{M}$ if for any $\sigma \in \operatorname{Aut}(\mathcal{M})$, $\sigma(a) = a$ iff D is invariant under σ .
- $A \subset \mathcal{M}$ is called a canonical base for a type p if any $\sigma \in \operatorname{Aut}(\mathcal{M})$ fixes A pointwise iff p is invariant under σ , that is: $\varphi(x,b) \in p \Leftrightarrow \varphi(x,\sigma(b)) \in p$.

Lemma 14. Any definable set has an imaginary canonical parameter, that is, a canonical parameter in \mathcal{M}^{eq} .

Proof. Write
$$X = \varphi(M, a)$$
. Define $x \sim y$ by $\varphi(M, x) = \varphi(M, y)$. $(a/\sim) \in \mathcal{M}^{eq}$ is a canonical parameter for X .

Note that the canonical parameter lies in $dcl^{eq}(a)$, also, EI is equivalent to saying each set has a (real) canonical parameter.

Lemma 15. Any definable type has an imaginary canonical base.

Proof.

- $B_{\varphi} = \{b \in \mathcal{M} \mid \varphi(x,b) \in p\}$ is definable by assumption
- $\sigma p = p$ iff $\sigma(B_{\varphi}) = B_{\varphi}$ for all φ
- Since B_{φ} is definable, it has a canonical parameter $a_{\varphi} \in \mathcal{M}^{eq}$
- $A = \{a_{\varphi} \mid \varphi \in \mathcal{L}\}$ is an imaginary canonical base for p.

Proposition 16. In an ω -stable theory, for any formulas $\varphi(x, a)$ of MR α and $\psi(x, y)$, the set $\{b \in \mathcal{M} \mid \mathrm{MR}(\varphi(x, a) \wedge \psi(x, b)) = \alpha\}$ is a-definable.

Proof. Write $\chi(x,b)$ for $\varphi(x,a) \wedge \psi(x,b)$.

- We might assume $MD(\varphi) = 1$.
- If $MR(\chi(x,c)) = \alpha$, there is a finite $X_c \subset \chi(\mathcal{M},c)$ such that if $X_c \subset \psi(\mathcal{M},b)$, $MR(\chi(x,b)) = \alpha$.
 - Chose $a_0 \in \chi(\mathcal{M}, c)$. If we can't find b_0 such that $a_0 \in \psi(\mathcal{M}, b_0)$ and $MR(\chi(x, b_0)) < \alpha$, then we can take $X_c = a_0$. Otherwise we take such a b_0 and continue by induction.
 - We have $MR(\chi(x,c) \wedge \bigwedge_{i \leq n} \neg \psi(x,b_i)) = \alpha$, so we can take a_{n+1} in there. Once again, if $X_c = \{a_0, \dots, a_n\}$ works, we're done; otherwise there is b_{n+1} such that $\{a_0, \dots, a_{n+1}\} \subset \psi(x,b_{n+1})$ and $MR(\chi(x,b_{n+1})) < \alpha$.
 - It has to stop because $\psi(a_i, b_j)$ holds iff $i \leq j$.
- Let $Y = \{X \subset \varphi(\mathcal{M}, a) \text{ finite } | X \subset \psi(\mathcal{M}, b) \Rightarrow \operatorname{MR}(\chi(x, b)) = \alpha \}$ and let $\theta_X(y) = \bigwedge_{x \in X} \psi(x, y)$. Now $\operatorname{MR}(\chi(x, b)) = \alpha$ iff $\bigvee_{X \in Y} \theta_X(b)$.
- We have the same result for $\neg \psi$.
- We move to a pair $(\mathcal{M}, \mathcal{M}^*)$ where $\mathcal{M} \leq M^*$ and \mathcal{M}^* is \mathcal{M} -saturated. We consider φ on \mathcal{M} and ψ on \mathcal{M}^* .
- By saturation we can finitize the disjunction, thus we have definability.
- If $\sigma(a) = a$, $MR(\chi(x, b)) = MR(\chi(x, \sigma(b)))$; thus we have a-definability.

Let $\varphi \in p$ realize MR and MD of p, then $p = \{\psi \mid \text{MR}(\varphi \wedge \psi) = \alpha\}$, thus:

Corollary 17. In an ω -stable theory, any $p \in S_n(A)$ is definable over a finite $A_0 \subset A$, and thus has a finite imaginary canonical base in $\operatorname{dcl}^{eq}(A_0)$.

Theorem 18. In an ω -stable theory, if $p \in S_n(A)$ and MD(p) = 1, then any non-forking extension q of p is A-definable.

If MD(p) > 1, there is $a \in acl^{eq}(A)$ such that q is Aa-definable.

Proof. In degree 1, we have $q = \{\psi(x, b) \mid \text{MR}(\varphi \wedge \psi) = \alpha, b \in B\} \in S_n(B)$, so we might use the same definition than for p, needing only parameters appearing in φ .

In degree d > 1:

7

- Fix \mathcal{M} containing B, q (hence p) has a non-forking extension q^* to \mathcal{M} . q^* is of MD 1.
- Take $\varphi(x) \in p$ and $\psi(x, b) \in q^*$ realizing MR and MD of p and q^* . We can assume ψ implies φ .
- $X = \{c \mid \mathrm{MR}(\psi(x,c)) = \alpha \text{ and } \forall d, \text{ if } \mathrm{MR}(\psi(x,d)) = \alpha, \text{ then either } \mathrm{MR}(\psi(x,c) \wedge \psi(x,d)) < \alpha \text{ or } \mathrm{MR}(\psi(x,c) \wedge \neg \psi(x,d)) < \alpha \} \text{ is } A$ -definable.
- $c \sim c'$: MR($\psi(x,c) \wedge \psi(x,c')$) = α is a definable equivalence relation on X.
- $|X/\sim| \leqslant d$.
- For any $c \sim b$, $q = \{\chi \mid \text{MR}(\chi \wedge \psi(x, c) = \alpha)\}$, and q is Ac-definable.
- Because \sim has finitely many classes and is A-def, $a=(b/\sim)\in\operatorname{acl}^{eq}(A)$, and q is Aa-def.

Corollary 19. In an ω -stable theory, if $p \in S_n(\mathcal{M})$ doesn't fork over A, then p has a canonical base in $\operatorname{acl}^{eq}(A)$. If p|A is stationary, p has a canonical base in $\operatorname{dcl}^{eq}(A)$.

Proof. Fix $\varphi(x, a)$ realizing MR(p), let $X = \{b \mid \varphi(x, b) \in p\}$. X is $acl(A)^{eq}$ (resp. A)- definable and $\sigma p = p$ iff $\sigma(X) = X$. Now X has a canonical parameter in $dcl^{eq}(acl^{eq}(A))$ (resp. $dcl^{eq}(A)$).

If p has a canonical base A, we write $\operatorname{cb}(p) = \operatorname{dcl}^{eq}(A)$. This is well-defined.

Corollary 20. In an ω -stable theory, $p \in S_n(\mathcal{M})$ doesn't fork over A iff $\operatorname{cb}(p) \subset \operatorname{acl}^{eq}(A)$.

Reformulating, $a \downarrow_C B$ iff p = tp(a/BC) doesn't fork over C iff $cb(p) \subset acl^{eq}(C)$.

Corollary 21. In an ω -stable theory, If $A = \operatorname{acl}^{eq}(A)$, $p \in S_n(A)$ is stationary.

Proof. Let φ realise MR and MD of p. If MD=1, we're done. If not, I can write $\varphi(x) = \varphi_1(x, b_1) \sqcup \cdots \sqcup \varphi_d(x, b_d)$. Let $q_i \in S_n(\mathcal{M})$ be the non-forking extension of p containing φ_i . $\operatorname{cb}(q_i) \subseteq \operatorname{acl}^{eq}(A) = A$, so we might assume $b_i \in \operatorname{acl}^{eq}(A)$. But then $\varphi(x, b_i)$ or $\neg \varphi(x, b_i)$ must be in p already; so we must have d = 1.

Proving non-forking characterization

Let \sqsubset check the conditions of theorem 12 and take $p \in S_n(A)$, $q \in S_n(B)$, $p \subset q$. If $p \sqsubset q$:

- By 3 (Boundedness) there is μ such that p has at most $\mu \sqsubset$ -extensions to $S_n(B)$.
- By proposition 11 we can take $B \subset \mathcal{M}$ such that any $r \in S_n(\mathcal{M})$ forking over A has at least μ conjugates over A.
- By 4 (Existence) and 5 (Transitivity) we can find $p \sqsubset r \in S_n(\mathcal{M})$.
- By 1 (Invariance) $p \sqsubset r'$ for any conjugate; since there can only be $< \mu$, they are non-forking.

The other direction needs the full power or canonical bases.

Lemma 22. In an ω -stable theory, for $p \in S_n(A)$ and $\kappa > max(|T|, |A|)$, in any \mathcal{M} strongly κ -homogeneous, all non-forking extensions of p to \mathcal{M} are conjugate.

Proof. Let q_1 , q_2 be extensions of p.

- In \mathcal{M}^{eq} , there is an A-automorphism of $\operatorname{acl}^{eq}(A)$ sending $q_1|\operatorname{acl}^{eq}(A)$ to $q_2|\operatorname{acl}^{eq}(A)$.
- By strong homogeneity, the reduct of this to the base sort extends to an A-automorphism σ of \mathcal{M} , which in turns corresponds to an A-automorphism σ^{eq} of \mathcal{M}^{eq} .
- Now $\sigma^{eq}q_1$ is a non-forking extension of $q_2|\operatorname{acl}^{eq}(A)$; but by stationarity this must be q_2 .

Now we take $p \subset q$ non-forking:

- Take \mathcal{M} strongly κ -homogeneous for a large enough κ , take $q \subset r \in S_n(\mathcal{M})$ non-forking and $p \sqsubset r' \in S_n(\mathcal{M})$.
- We know $p \subset r'$ is non-forking.
- By the previous lemma r and r' are conjugate, so $p \sqsubset r$.
- By 6 (Monotonicity) we have $p \sqsubset q$.

9