Geometry of ACVFEF

Seminar on definable groups in metastable theories

Blaise BOISSONNEAU

October 21, 2019

Conventions Throughout this talk, K will always denote a field, v its
valuation, I' its value group and k its residue field. We will also use K
to denote the full valued field structure of K. We let letters like x denote
seeminglessly variables or tuples of variables. We write we for the terrible
tdea to have a seminar on monday, my ruined week-end and I.

Classical results on ACVF

The following results are classical and will be provided without proofs, one
can find more details in Martin Hills’ lecture [2].

Definition 1. The three standard languages in which one can talk about
valued fields in first-order are the following:

o Ly, with only 1 sort for the field, Laiy = Lying U {|}, where the symbol
| is a binary relation, interpreted in the following way: x|y < v(z) <

v(y).

e Lr, with 2 sorts, one for the field K equipped with L,i,e, and one for
the value goup I' equipped with Loag. We also add a function symbol
val, going from K to I', representing the valuation.

o Lrj, with 3 sorts, one for the field K equipped with L, one for
the value goup I' equipped with Loag, and one for the residue field k&
equipped with a copy of L,i,s. We also add the map Res, from K x K

to k; it corresponds to the map Res(a, b) = res(%).

These 3 languages can be used interchangeably; notice that they are all
bi-interpretable.



Theorem 2 (Robinson). The theory ACVFE eliminates quantifiers in any
of these 3 languages. Completions of ACVF are ACVFy,, ACVF,,, and
ACVF, ,, where the index denotes the characteristics of the field and residue
field.

Recall that a definable set D is said to be stably embedded if any definable
subset of D is D-definable. As a direct consequence of quantifier elimination,
we have the following:

Corollary 3. I and k are stably embedded in K F ACVF, in whichever
of the 3 languages, and the induced structures on I' and k are pure ordered
groups and field structures. Moreover, they are orthogonal, meaning that

any definable subset of ™ x k™ s a finite Boolean combination of rectangles
A x B, where A CT™ is I'-definable and B™ C k is k-definable.

Indeed, no function in the language has domain I' or k, and anytime a
term val(a) or res(b) occurs in a formula, we can replace it with parameters
v = v(a) from T or b from k. Note that if K F ACVF, then I is o-minimal
and £ is strongly minimal.

Topology & C-minimality

Definable subsets of k£ and I' are thus well understood. In order to describe
more precisely the definable subsets of K, we need to study its canonical
topology.

Definition 4 (Balls). Let a € K and v € I. We define open and closed balls
of center a and radius v as follow:

e B.o(a) = {r € K |v(e - a) > 7}
e Bo(a) = {z € K | v —a) > 7}
Open balls form a base for a V-topology (which is in peculiar a topology)

on K, usually denoted 7,. Field operations are continuous for this topology.

Remark 5. Because of the ultrametric inequality, any element of a ball is
a center of this ball. This implies that any two balls are either disjoint or
nested. The latter fact remains true for generalized balls, see definition [0]

Definition 6 (Swiss cheese). We call generalized balls any open or closed
ball, as well as singletons (balls with infinite radius) and K itself (ball with



negative infinite radius). A swiss cheese C'is then defined to be a generalized
ball with holes (see fig. [1):

i=1

Where B and B; C B are generalized balls.

Figure 1: A swiss cheese.

Theorem 7 (Holly). ACVF is C-minimal, meaning that anything definable
in a model of ACVF is a finite union of swiss cheeses.

Corollary 8. ACVF,, is NIP for any (p,q) = (ch(K),ch(k)).

Proof. Let ¢(z,y) be any formula, with |z| = 1. By theorem[7] (K, b) define
a Boolean combination of generalized balls for any b € K. By compactness,
there is IV such that for all b, (K, b) is a Boolean combination of at most N
generalized balls. Remark[5]tells us that generalized balls have VC-dimension
2, and since Boolean combinations of NIP formulas are NIP, ¢ is NIP. [

About types

We’re doing a small detour to study some types and their properties in ACVF,
one can look into Will Johnson’s notes [3] for more details.

Proposition 9. The following types are definable:
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e For any (not generalized) ball B, pp(x), the generic type of B, saying
that x € B but x ¢ B’ for any ball B C B. For small sets C, pg|C
says the same for all C*&-definable B' C B.

e pi(x), the generic type of k, saying that res(x) is transcendental over
k. For small sets C, py(z)|C says that res(x) ¢ res(C)?.

Lemma 10. a F po|C iff res(a) F pr|C; so po is dominated along res and
resy po = Pk-

Proof. Any subball of O is included in res™'(a) for some a € k. Thus,
a F polC iff a ¢ res™!(a) for all a € res(C)2s. O

Lemma 11. p; is generically stable; so is po and any pg for B a closed ball.

Proof. We have (a,b) F pr, @ pp|C < b & res(C)*8 A a ¢ (res(C)b)™#, thus it
is clear that p, commutes with itself and hence is generically stable. Since
res, po = Pk, and since any closed ball is definably in bijection with O (see
the proof of lemma [15)), pp is generically stable for closed balls. m

Imaginaries

Definable subsets of ACVF are thus very well understood thanks to quantifier
elimination. Interpretable subsets are more tricky, and in the standard lan-
guages ACVF does not eliminate imaginaries. For that we need to introduce
new sorts. We will follow Haskell, Hrushovski and Macpherson’s notation in
[1] where they prove elimination of imaginaries.

Definition 12 (Geometric language). We define the geometric language Lg
by adding to Lg;, — or to any of the 2 other classical languages — the following;:

e sorts S, for n > 1 which are to be intrepreted as GL,(K)/ GL,(O),
e sorts 7T;, for n > 1 which are to be intrepreted as | J,.q s/Ms,

e relation symbols €, on K™ x S,,, which correspond to the membership
En(ala' 0y Qn, 3) <~ (ala' " an) € s,

e function symbols 7,, : T, — S, which correspond to the projections
T,(t) =s &t e s/Ms,

e partial function symbols v, : K" x S,, — T,,, which correspond to the
projections v, (a, s) = a + Ms when €,(a, s),



e relation symbols *¢ on S, x --- x S, x Y for every atomic formula

o(z1, -+, 2, y), where the z; are n?-tuples — matrices — and y is a tu-
ple with domain denoted Y; *¢(s1,- -+, s, b) will hold iff p(ay,:- -, a,,b)
holds for any generic resolution (ay,---,a,) of (s, -+, s,) over b.

Remark 13. The sort S, correponds to the set of O-lattices, and we have
['~ S = K*/O*. The set T,, can be seen as the set of pairs (s, z), where
s € S, and x € s/Ms. In this setting 7,(s,a) = s and v,(a,s) = (s,a).
Note also that s/ Ms ~ s Qe k, giving 77 ~T" x k ~ RV. These sets are all
interpretable in ACVF.

Theorem 14 (Haskell, Hrushovski, Macpherson). ACVF eliminates quanti-
fiers and imaginaries in Lg.

In some sense, this elimination of imaginaries is optimal, as discussed in
the original paper [I]. For example, adding sorts for all generalized balls
is not enough. But some variant of these geometric sorts exist, sometimes
simplifying a lot the proof of theorem [I4] we can mention Will Johnson’s
proof in [3], using only one (much larger) family of sorts:

R, ={(s,v) | s € S,, v is a [-dimensionnal vector subspace of Ms}

This sort still contains (interpretations of) the usual geometric sorts.

Additional results

We turn again to Martin Hills’ lecture [2] to list some results which will be
usefull in the next talks.

Lemma 15. If K F ACVF, then no definable function f : k™ — K™ or
f:T™ — K™ can have infinite image.

Proof.

e Suppose a definable function f has infinite image in K™. Then one of
m; o f must have infinite image. So it is enough to show the lemma for
m = 1.

e If f is definable and has image in K, by C-minimality (theorem , its
image must be a disjoint union of swiss cheeses.

e Any infinite cheese contains a closed ball.



To prove this point, let’s define the radius of a generalized ball B in the
following way:
P it B= B?P(“L
) pt  if B=B.,(a),
rad(B) =9 L o i B {a} .
-0 if B=K.

The radius lies in ' UTF U {+00, —00}. For v € I' U {00}, we write:

rad(B) = & v=p,
rad(B) = + & v >p,

7 = rad(B) & rad(B) =400 & 7 =00,
rad(B) =

and we write 7 > rad(B) for v > rad(B) Ay # rad(B).
We now have for any generalized ball B that:

B-,(c) C B 4 ce€ Band~y2>rad(B)
B-.(¢c) 2B < BN Bs,(c)#0 and =(y > rad(B)).

Consider now an infinite cheese C = B\ |J;_, B;. Since it is infinite,
rad(B) # 4o0o. Let ¢ € C. We want to find v such that Bs,(c) C B
and B; ¢ Bs,(c). Regarding radiuses, it is enough to take v > rad(B)
and v > rad(B;). If no B; has +oo for radius, then we can find such an
7. Otherwise, let m = max(rad(B,)) for the B; which are not a singleton,
and let m; = v(c — q;) for all B; = {a;}. Then m and m; are not infinite,
and v > max(m,m;) works: Bs,(c) is disjoint from the B; because of their
radiuses, and a; ¢ B>,(c) since v(c — a;) < 7.

e Any closed ball is in definable bijection with O: Bs,(c) = aO + ¢ for
any a € K* with v(a) = 7.

e The definable functions val and res are such that val(Q) and res(QO)
are infinite.

e Take f: k™ — K of infinite image. Restrict its image to a chosen closed
ball B> (c). Send B (c) to O via the definable map g : © — £<. Now
consider valog o f|s-1(p._(c)). Its graph is a definable subset of k;" x I,
therefore by orthogonality it is a finite union of rectangles. But these
rectangles must be of the form D x {~}, since it is the graph of a
function. Then the image of this function is finite, contradicting what
was said before.

e Same goes for f: '™ — K by composing it with the residue map.
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Proposition 16. |K| < |k|.

Proof. For any v € I', we have B>,(0) = (U, @ + B>(0), where a € O,
res(a) = @. Thus, we may recursively construct f, : K/B>.(0) — k in
the following way: letting (x; + B>,(0));c; enumerate K/B~,(0), we choose
fy(z; + B-,(0)) € k such that if z; + B>,(0) # x; + B>,(0) for all j < 1,
then f.,(z; + B-,(0)) # f,(z; + B>,(0)). Then, we associate a € K with the
function g, : I' = k defined by g,(v) = f,(a + B>-(0)). Note that if a # b,
then ga(v(a - b)) 7é gb(’U((l - b))7 indeed a —b € B}v(afb)<0) \ B>v(afb) (0) O

Corollary 17. Any valued field K admits a mazimal immediate extension
K'. If K E ACVF, then K' E ACVF, and K' is an elemantary extension of
K.

Proof. Consider the set of all immediate extensions of K and apply Zorn’s
lemma to find K’, thanks to the born obtained in proposition [16} Now if K
ACVF, its residue field is algebraically closed and its value group is divisible.
Then K’?# is an immediate extension of K’, hence trivial, so K’ must be
algebraically closed. We have K < K’ by completeness of ACVF o) chr)-

O
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