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Conventions Throughout this talk, K will always denote a field, v its
valuation, Γ its value group and k its residue field. We will also use K
to denote the full valued field structure of K. We let letters like x denote
seeminglessly variables or tuples of variables. We write we for the terrible
idea to have a seminar on monday, my ruined week-end and I.

Classical results on ACVF
The following results are classical and will be provided without proofs, one
can find more details in Martin Hills’ lecture [2].

Definition 1. The three standard languages in which one can talk about
valued fields in first-order are the following:

• Ldiv, with only 1 sort for the field, Ldiv = Lring∪{|}, where the symbol
| is a binary relation, interpreted in the following way: x|y ⇔ v(x) 6
v(y).

• LΓ, with 2 sorts, one for the field K equipped with Lring, and one for
the value goup Γ equipped with LOAG. We also add a function symbol
val, going from K to Γ, representing the valuation.

• LΓk, with 3 sorts, one for the field K equipped with Lring, one for
the value goup Γ equipped with LOAG, and one for the residue field k
equipped with a copy of Lring. We also add the map Res, from K ×K
to k; it corresponds to the map Res(a, b) = res(a

b
).

These 3 languages can be used interchangeably; notice that they are all
bi-interpretable.

1



Theorem 2 (Robinson). The theory ACVF eliminates quantifiers in any
of these 3 languages. Completions of ACVF are ACVF0,0, ACVF0,p, and
ACVFp,p, where the index denotes the characteristics of the field and residue
field.

Recall that a definable set D is said to be stably embedded if any definable
subset of D is D-definable. As a direct consequence of quantifier elimination,
we have the following:

Corollary 3. Γ and k are stably embedded in K � ACVF, in whichever
of the 3 languages, and the induced structures on Γ and k are pure ordered
groups and field structures. Moreover, they are orthogonal, meaning that
any definable subset of Γn× km is a finite Boolean combination of rectangles
A×B, where A ⊆ Γn is Γ-definable and Bm ⊆ k is k-definable.

Indeed, no function in the language has domain Γ or k, and anytime a
term val(a) or res(b) occurs in a formula, we can replace it with parameters
γ = v(a) from Γ or b from k. Note that if K � ACVF, then Γ is o-minimal
and k is strongly minimal.

Topology & C-minimality
Definable subsets of k and Γ are thus well understood. In order to describe
more precisely the definable subsets of K, we need to study its canonical
topology.

Definition 4 (Balls). Let a ∈ K and γ ∈ Γ. We define open and closed balls
of center a and radius γ as follow:

• B>γ(a) = {x ∈ K | v(x− a) > γ}

• B>γ(a) = {x ∈ K | v(x− a) > γ}

Open balls form a base for a V-topology (which is in peculiar a topology)
on K, usually denoted τv. Field operations are continuous for this topology.

Remark 5. Because of the ultrametric inequality, any element of a ball is
a center of this ball. This implies that any two balls are either disjoint or
nested. The latter fact remains true for generalized balls, see definition 6.

Definition 6 (Swiss cheese). We call generalized balls any open or closed
ball, as well as singletons (balls with infinite radius) and K itself (ball with
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negative infinite radius). A swiss cheese C is then defined to be a generalized
ball with holes (see fig. 1):

C = B \
n⋃
i=1

Bi

Where B and Bi ( B are generalized balls.

Figure 1: A swiss cheese.

Theorem 7 (Holly). ACVF is C-minimal, meaning that anything definable
in a model of ACVF is a finite union of swiss cheeses.

Corollary 8. ACVFp,q is NIP for any (p, q) = (ch(K), ch(k)).

Proof. Let ϕ(x, y) be any formula, with |x| = 1. By theorem 7, ϕ(K, b) define
a Boolean combination of generalized balls for any b ∈ Kn. By compactness,
there is N such that for all b, ϕ(K, b) is a Boolean combination of at most N
generalized balls. Remark 5 tells us that generalized balls have VC-dimension
2, and since Boolean combinations of NIP formulas are NIP, ϕ is NIP.

About types
We’re doing a small detour to study some types and their properties in ACVF,
one can look into Will Johnson’s notes [3] for more details.

Proposition 9. The following types are definable:
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• For any (not generalized) ball B, pB(x), the generic type of B, saying
that x ∈ B but x /∈ B′ for any ball B′ ( B. For small sets C, pB|C
says the same for all Calg-definable B′ ( B.

• pk(x), the generic type of k, saying that res(x) is transcendental over
k. For small sets C, pk(x)|C says that res(x) /∈ res(C)alg.

Lemma 10. a � pO|C iff res(a) � pk|C; so pO is dominated along res and
res∗ pO = pk.

Proof. Any subball of O is included in res−1(α) for some α ∈ k. Thus,
a � pO|C iff a /∈ res−1(α) for all α ∈ res(C)alg.

Lemma 11. pk is generically stable; so is pO and any pB for B a closed ball.

Proof. We have (a, b) � pk ⊗ pk|C ⇔ b /∈ res(C)alg ∧ a /∈ (res(C)b)alg, thus it
is clear that pk commutes with itself and hence is generically stable. Since
res∗ pO = pk, and since any closed ball is definably in bijection with O (see
the proof of lemma 15), pB is generically stable for closed balls.

Imaginaries
Definable subsets of ACVF are thus very well understood thanks to quantifier
elimination. Interpretable subsets are more tricky, and in the standard lan-
guages ACVF does not eliminate imaginaries. For that we need to introduce
new sorts. We will follow Haskell, Hrushovski and Macpherson’s notation in
[1] where they prove elimination of imaginaries.

Definition 12 (Geometric language). We define the geometric language LG
by adding to Ldiv – or to any of the 2 other classical languages – the following:

• sorts Sn for n > 1 which are to be intrepreted as GLn(K)/GLn(O),

• sorts Tn for n > 1 which are to be intrepreted as
⋃
s∈Sn s/Ms,

• relation symbols εn on Kn × Sn, which correspond to the membership
εn(a1,· · ·, an, s)⇔ (a1,· · ·, an) ∈ s,

• function symbols τn : Tn → Sn, which correspond to the projections
τn(t) = s⇔ t ∈ s/Ms,

• partial function symbols νn : Kn × Sn → Tn, which correspond to the
projections νn(a, s) = a+Ms when εn(a, s),
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• relation symbols ∗ϕ on Sn1 × · · · × Snr × Y for every atomic formula
ϕ(x1,· · ·, xr, y), where the xi are n2

i -tuples – matrices – and y is a tu-
ple with domain denoted Y ; ∗ϕ(s1,· · ·, sr, b) will hold iff ϕ(a1,· · ·, ar, b)
holds for any generic resolution (a1,· · ·, ar) of (s1,· · ·, sr) over b.

Remark 13. The sort Sn correponds to the set of O-lattices, and we have
Γ ' S1 = K×/O×. The set Tn can be seen as the set of pairs (s, x), where
s ∈ Sn and x ∈ s/Ms. In this setting τn(s, a) = s and νn(a, s) = (s, a).
Note also that s/Ms ' s⊗O k, giving T1 ' Γ× k ' RV . These sets are all
interpretable in ACVF.

Theorem 14 (Haskell, Hrushovski, Macpherson). ACVF eliminates quanti-
fiers and imaginaries in LG.

In some sense, this elimination of imaginaries is optimal, as discussed in
the original paper [1]. For example, adding sorts for all generalized balls
is not enough. But some variant of these geometric sorts exist, sometimes
simplifying a lot the proof of theorem 14, we can mention Will Johnson’s
proof in [3], using only one (much larger) family of sorts:

Rn,l = {(s, v) | s ∈ Sn, v is a l-dimensionnal vector subspace ofMs}

This sort still contains (interpretations of) the usual geometric sorts.

Additional results
We turn again to Martin Hills’ lecture [2] to list some results which will be
usefull in the next talks.

Lemma 15. If K � ACVF, then no definable function f : kn → Km or
f : Γn → Km can have infinite image.

Proof.

• Suppose a definable function f has infinite image in Km. Then one of
πi ◦ f must have infinite image. So it is enough to show the lemma for
m = 1.

• If f is definable and has image in K, by C-minimality (theorem 7), its
image must be a disjoint union of swiss cheeses.

• Any infinite cheese contains a closed ball.
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To prove this point, let’s define the radius of a generalized ball B in the
following way:

rad(B) =


ρ if B = B>ρ(a),
ρ+ if B = B>ρ(a),
+∞ if B = {a} ,
−∞ if B = K.

The radius lies in Γ t Γ+ t {+∞,−∞}. For γ ∈ Γ ∪ {∞}, we write:

γ > rad(B)⇔


rad(B) = ρ & γ > ρ,
rad(B) = ρ+ & γ > ρ,
rad(B) = +∞ & γ =∞,
rad(B) = −∞.

and we write γ > rad(B) for γ > rad(B) ∧ γ 6= rad(B).
We now have for any generalized ball B that:

B>γ(c) ⊆ B ⇔ c ∈ B and γ > rad(B)
B>γ(c) ⊇ B ⇔ B ∩B>γ(c) 6= ∅ and ¬(γ > rad(B)).

Consider now an infinite cheese C = B \
⋃n
i=1Bi. Since it is infinite,

rad(B) 6= +∞. Let c ∈ C. We want to find γ such that B>γ(c) ⊆ B
and Bi 6⊆ B>γ(c). Regarding radiuses, it is enough to take γ > rad(B)
and γ > rad(Bi). If no Bi has +∞ for radius, then we can find such an
γ. Otherwise, let m = max(rad(Bj)) for the Bj which are not a singleton,
and let mi = v(c − ai) for all Bi = {ai}. Then m and mi are not infinite,
and γ > max(m,mi) works: B>γ(c) is disjoint from the Bj because of their
radiuses, and ai /∈ B>γ(c) since v(c− ai) < γ.

• Any closed ball is in definable bijection with O: B>γ(c) = aO + c for
any a ∈ K× with v(a) = γ.

• The definable functions val and res are such that val(O) and res(O)
are infinite.

• Take f : kn → K of infinite image. Restrict its image to a chosen closed
ball B>γ(c). Send B>γ(c) to O via the definable map g : x→ x−c

a
. Now

consider val ◦g ◦ f |f−1(B>γ(c)). Its graph is a definable subset of kn × Γ,
therefore by orthogonality it is a finite union of rectangles. But these
rectangles must be of the form D × {γ}, since it is the graph of a
function. Then the image of this function is finite, contradicting what
was said before.

• Same goes for f : Γn → K by composing it with the residue map.
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Proposition 16. |K| 6 |k||Γ|.

Proof. For any γ ∈ Γ, we have B>γ(0) =
⋃
a∈k a + B>γ(0), where a ∈ O,

res(a) = a. Thus, we may recursively construct fγ : K/B>γ(0) → k in
the following way: letting (xi + B>γ(0))i∈I enumerate K/B>γ(0), we choose
fγ(xi + B>γ(0)) ∈ k such that if xi + B>γ(0) 6= xj + B>γ(0) for all j < i,
then fγ(xi +B>γ(0)) 6= fγ(xj +B>γ(0)). Then, we associate a ∈ K with the
function ga : Γ → k defined by ga(γ) = fγ(a + B>γ(0)). Note that if a 6= b,
then ga(v(a− b)) 6= gb(v(a− b)); indeed a− b ∈ B>v(a−b)(0) \B>v(a−b)(0).

Corollary 17. Any valued field K admits a maximal immediate extension
K ′. If K � ACVF, then K ′ � ACVF, and K ′ is an elemantary extension of
K.

Proof. Consider the set of all immediate extensions of K and apply Zorn’s
lemma to find K ′, thanks to the born obtained in proposition 16. Now if K �
ACVF, its residue field is algebraically closed and its value group is divisible.
Then K ′ alg is an immediate extension of K ′, hence trivial, so K ′ must be
algebraically closed. We have K 4 K ′ by completeness of ACVFch(K),ch(k).
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